• 제목/요약/키워드: surface finishing method

검색결과 219건 처리시간 0.025초

초고속 원심방사에 의한 아세트산프로피온산 셀룰로오스/폴리부틸렌 숙시네이트 다공성 마이크론 섬유 제조 (Fabrication of Porous Cellulose Acetate Propionate/Polybutylene Succinate Microfibers by High Speed Centrifugal Spinning)

  • 김태영;김미경;김진수;이정언;정재훈;김영권;김태현;김기영;염정현
    • 한국염색가공학회지
    • /
    • 제35권4호
    • /
    • pp.239-245
    • /
    • 2023
  • Cellulose is an abundant biodegradable material in nature with excellent properties, but due to its poor processability, it has been widely studied for processing through modification. Cellulose acetate propionate (CAP) is a cellulose derivative in which the hydroxyl group of cellulose is replaced by acetyl and propionyl groups. CAP has several advantages, such as excellent solubility, structural stability, light and weather resistance, and good transparency. Porous nanofibers with excellent specific surface area, which can be applied in various fields, can be easily formed by the phase separation method using highly volatile solvents. High speed centrifugal spinning is a nano/micro fiber preparation method with advantages such as fast spinning and easy alignment control. In this study, a CAP/polybutylene succinate (PBS) spinning solution with chloroform as solvent was prepared to prepare porous microfibers and the fiber morphology was examined as a function of the disk rotation speed in an high speed centrifugal spinning device.

CAM Zirconia 완전도재 구조물의 정밀 적합도에 관한 연구 (A STUDY OF PRECISE FIT OF THE CAM ZIRCONIA ALL-CERAMIC FRAMEWORK)

  • 전미현;전영찬;정창모;임장섭;정희찬
    • 대한치과보철학회지
    • /
    • 제43권5호
    • /
    • pp.611-621
    • /
    • 2005
  • State of problem: Zirconia all-ceramic restoration fabricated with CAM system is on an increasing trend in dentistry. However, evaluation of the marginal and internal fits of zirconia bridge seldomly have been reported. Purpose: This study was to evaluate the at of margin and internal surface in posterior 3-unit zirconia bridge framework fabricated with CAM system(DeguDent, Germany). Material and Method: Preparations of secondary premolar and secondary molar on artificial resin model were performed for fabrication of 3-unit posterior bridge framework. Fits of 5 zirconia bridge framework were compared with 5 precious ceramo-metal alloy framework(V-GnathosPlus, Metalor, Switzerland), and prepared margins were designed to chamfer and shoulder finishing line. Each framework was cemented to epoxy resin model with reinforced glass ionomer(FujiCEM, GC Co., Japan), embedded in acrylic resin and sectioned in two planes, mesio-distal and buccolingual. Samples were divided into six pieces by sectioning and had two pieces of each surface(i.e mesial, distal, buccal and lingual surface) per abutment, so there were eight measuring points in each abutment. External gap was measured at the margin and internal gaps were measured at the margin, axial and occlusal surface. Gaps were observed under the measuring microscope(Compact measuring microscope STM5; Olympus, Japan) at a magnification of $\times100$. T-test were used to determine the statistic significance of the different gaps between zirconia and metal framework. Results and Conclusion: 1. External and internal marginal gaps of zirconia and metal framework were in clinically acceptable range. External marginal gaps were not different significantly between zirconia$(81.9{\mu}m)$ and metal $(81.3{\mu}m)$ framework and internal marginal gaps of zirconia $(44.6{\mu}m)$ were smaller than those of metal framework $(58.6{\mu}m)$. 2. Internal axial gaps of zirconia framework$(96.7{\mu}m)$ were larger than those of metal frame-work$(78.1{\mu}m)$ significantly and adversely, internal occlusal gaps of zirconia frame-work$(89.4{\mu}m)$ were smaller than those of metal framework $(104.9{\mu}m)$ significantly. 3. There were no significant differences in external and internal marginal gaps between chamfer and shoulder finish line when zirconia frameworks were fabricated.

알루미나-유리 복합체용 글래스의 조성에서 $CeO_2$의 함량변화가 강도에 미치는 영향 (EFFECT OF $CEO_2$ ADDITION IN GLASS COMPOSITION ON THE STRENGTH OF ALUMINA-GLASS COMPOSITES)

  • 이화진;송광엽;강정길
    • 대한치과보철학회지
    • /
    • 제38권5호
    • /
    • pp.595-605
    • /
    • 2000
  • Dental ceramics have good aesthetics, biocompatibility, low thermal conductivity, abrasion resistance, and color stability. However poor resistance to fracture and shrinkage during firing process have been limiting factors in their use, particularly in multiunit ceramic restorations. A new method for making all-ceramic crowns that have high strength and low processing shrinkage has been developed and is referred to as the Vita In-Ceram method. This study was performed to investigate the effect of $CeO_2$ addition in borosilicate glasses on the strength of alumina-glass composites. Porous alumina compacts were prepared by slip casting and sintered at $1,100^{\circ}C$ for 2 hours. Dense composites were made by infiltration of molten glass into partially sintered alumina at $1,140^{\circ}C$ for 4 hours. Specimens were polished sequentially from #800 to #2000 diamond disk. and the final surface finishing on the tensile side was received an additional polishing sequence through $1{\mu}m$ diamond paste. Biaxial flexure test was conducted by using ball-on-three-ball method at a crosshead speed of 0.5mm/min. To examine the microstructural aspect of crack propagation in the alumina-glass composites, Vickers-produced indentation crack was made on the tensile surface at a load of 98.0 N and dwell time of 15 sec, and the radial crack patterns were examined by an optical microscope and a scanning electron microscope. The results obtained were summarized as follows; 1. The porosity rates of partially sintered alumina decreased with the rising of firing temperature. 2. The maximum biaxial flexure strength of 423.5MPa in alumina-glass composites was obtained with an addition of 3 mol% $CeO_2$ in glass composition and strength values showed the aspect of decrease with the increase of $CeO_2$ content. 3 The biaxial flexure strength values of alumina-glass composites were decreased with rising the firing temperature. 4. Observation of the fracture surfaces of alumina-glass composites indicated that the enhancement of strength in alumina-glass composites was due to the frictional or geometrical inter-locking of rough fracture surfaces and ligamentary bridging by intact islands of materials left behind the fracture front.

  • PDF

프탈로시아닌계 안료의 함산소불소화가 수분산 특성에 미치는 영향 (Effect of Oxyfluorination on Water Dispersion of Phthalocyanine Pigment)

  • 이민규;배진석;김태경;안승현;정민정;이영석;정의경
    • 한국염색가공학회지
    • /
    • 제29권4호
    • /
    • pp.195-201
    • /
    • 2017
  • To study the effect of oxyfluorination on water dispersion of phthalocyanine blue(C.I. pigment blue 15:3), the pigment was oxyfluorinated using various oxygen to fluorine ratio of the reactant gas. After the oxyfluorination of the phthalocyanine blue pigment, no significant change in FT-IR spectra was observed, whereas XPS spectra showed the introduction of oxygen and fluorine containing functional groups. This suggests that the oxyfluorination of the pigment only occurred on the surface of the pigment particle and resulted in no significant change in UV-Vis spectra of the pigment. However, the oxyflurinated pigments showed improved water dispersion, compared to the non-treated pigment. Especially, when the oxygen to fluorine ratio was 47:3, the water dispersion of the oxyfluorinated pigments significantly increased, compared to the non-treated pigments. This suggests that the oxyfluorination of the phthalocyanine blue pigment has a potential to be used as a water dispersion improving method.

황토 날염을 이용한 일회용 작업복 소재의 쾌적성 및 기능성 향상에 관한 연구 (Improvement of Comfortability and Ability on Nonwoven Fabric for Disposable Work Clothing Using Yellow Soil Printing)

  • 정명희;박순자;전촌조자;소자붕자;신정숙
    • 복식문화연구
    • /
    • 제15권2호
    • /
    • pp.276-283
    • /
    • 2007
  • The purpose of this study were to investigate characteristic changes on nonwoven fabric for disposable work clothes by the yellow soil printing. It separate grind yellow soil as two different size of particles $45\sim52{\mu}m$ and $53\sim65{\mu}m$ for hand screen printing on three kind of nonwoven fabrics. To examine the effect of yellow soil printing on nonwoven fabric were to observe, dyeability by using spectrophotometer, moisture regain by oven method, air permeability, anion property and antibacterial activity. The results were as follows: When yellow soil concentration increased from 5 to 10%, K/S value also increased from 1.05 to 1.88. When yellow soil concentration increased, moisture regain also increased. In same concentration, moisture regain occurred higher as particle of small size. Air permeability decreased when the charcoal printing concentration increased. Anion occurrence appeared $140\sim160ion/cc$ from three different kinds of nonwoven fabrics in 3% and 9% yellow soil concentration. Therefore, occurred anion ineffectively. In concentration of 3%, rate of deodorization measured as 89%, 83% and 87%, and 9% concentration caused 96%, 86% and 93% of high deodorization. Antibacterial activity examination in nonfinished nonwoven fabric resulted range of 60%, however, 3% and 9% concentration finished nonwoven fabric resulted 99.9% of excellent antibacterial activity Surface temperature increased $1.5\sim2^{\circ}C$ by yellow soil finishing.

  • PDF

나일론 6 섬유의 감량가공 및 특성 연구 (A Study on the Weight Loss Treatment and Characteristics of Nylon 6 Fiber)

  • 임성찬;이현우;이현재;원종성;진다영;이승구
    • 한국염색가공학회지
    • /
    • 제27권3호
    • /
    • pp.175-183
    • /
    • 2015
  • Weight loss treatment of a fiber leads an improvement of its handle and drape properties. Hydrolysis of a fiber is commonly known as a method to reduce its weight of 5-40%. Most of the studies on the weight loss treatment are mainly based on polyester fibers and there has been almost no study on the weight reduction of nylon fibers. In this study, however, in order to develop a use of nylon 6 fiber for the industrial applications such as toothbrush, underwear, carpet and more, weight loss treatment of a nylon 6 fiber was carried out. Under various treatment conditions, morphological analysis were done to observe the change in the structure of the surface and analysis. From the observation of formic acid treated nylon 6 fiber, there were many etched and deformed morphologies. Thermal and crystalline properties were analyzed to find the changes in the crystal structure caused by the weight loss treatment. There were little differences in the crystalline properties of nylon 6 fiber by formic acid treatment. Tensile strength of nylon 6 fiber decreases with acid concentration. The FITR peak intensity of the amide bond decreases with formic acid concentration.

고발색 디지털 프린팅을 위한 미디어 전처리 기술 (A Study on the Media Treatment Technology of the High-Coloured Digital Textile Printing)

  • 홍민기;이하나;김지영;장련평;윤석한;김미경;김삼수
    • 한국염색가공학회지
    • /
    • 제19권4호
    • /
    • pp.1-9
    • /
    • 2007
  • In recent years, the application of digital textile printing has increased. The benefits of using this method include the ease of sampling and the production of printed textiles. However, the production process of digital textile printing differs from that of conventional printing. For successful digital textile printing by ink-jet technology, the pretreatment of fabrics is very important in order to overcome the following problems. Low viscosity ink can spread easily on the textile surface leading to poor resolution. As a result, the combination of ink and pretreatment chemicals is still impractical and consequently most fabrics used in digital textile printing will require a pre treated coating in order to prevent the ink colours from bleeding on the fabric. Research presented in this paper shows some preliminary attempts to establish the relationship between the pre treatment and the digital textile printing quality. Various cotton fabrics were treated with pre treatment agents including ingredients like thickener, alkali and humectant, and then ink spread effect and colour yield of printed fabrics by reactive ink were analysed by using an optical microscope and K/S value. The results show that digital textile printing quality on cotton fabrics can be optimized with appropriate pre treatments.

수용액 중의 염료 제거를 위한 폐수처리공정의 특성(2) - 반응성염료의 오존산화 및 섬유상활성탄 흡착 처리 - (Characteristics of The Wastewater Treatment Processes for The Removal of Dyes in Aqueous Solution(2) - Ozonation or ACF Adsorption Treatment of Reactive Dyes -)

  • 한명호;허만우
    • 한국염색가공학회지
    • /
    • 제19권3호
    • /
    • pp.26-36
    • /
    • 2007
  • This study was carried out to treat the aqueous solutions containing reactive dyes(RB19, RR120 and RY179) by the Ozone demand flask method and adsorption process using activated carbon fiber(ACF) which are one of the main pollutants in dye wastewater. Ozone oxidation of three kinds of the reactive dyes was examined to investigate the reactivity of dyes with ozone, competition reaction and ozone utilization on various conditions for single- and multi-solute dye solution. Concentration of dyes was decreased continuously with increasing ozone dosage in the single-solute dye solutions. Competition quotient values were calculated to investigate the preferential oxidation of individual dyes in multi-solute dye solutions. Competition quotients(CQi) and values of the overall utilization efficiency, ${\eta}O_3$, were increased at 40mg/l of ozone dosage in multi-solute dye solutions. ACF(A-15) has much larger specific surface area$(1,584m^2/g-ACF)$ in comparison with granular activated carbon adsorbent (F400, $1,125m^2/g-GAC$), which is commonly used, and most of pores were found to be micropores with pore radius of 2nm and below. It was found that RB19 was most easily adsorbed among the dyes in this study. In the case of PCP (p-chlorophenol) and sucrose, which are single component adsorbate, adsorption capacities of ACF(A-15) were in good agreement with the batch adsorption measurement, and saturation time predicted of ACF columns for these components was also well agreed with practically measured time. But in the case of reactive dyes, which have relatively high molecular weight and aggregated with multi-components, adsorption capacities or saturation time predicted were not agreed with practically measured values.

유리섬유/폴리카보네이트 복합재료의 기지 분자량에 따른 함침 및 기계적 물성 평가 (Evaluation of Impregnating and Mechanical Properties for Glass Fiber/Polycarbonate Composites Depending on Molecular Weight of Matrix)

  • 김늘새롬;장영진;이은수;권동준;양성백;이정언;염정현
    • Composites Research
    • /
    • 제34권1호
    • /
    • pp.1-7
    • /
    • 2021
  • 열가소성 섬유강화 복합재료는 수송용 기기의 경량화 소재로써 적용 분야가 확대되고 있다. 본 연구에서는 분자량이 다른 폴리카보네이트(PC)를 이용하여 연속섬유 강화 유리섬유(GF)/폴리카보네이트(PC) 복합소재의 함침성 및 기계적 물성에 대한 평가를 진행하였다. GF 직물과 PC 필름을 제조한 후, 이를 이용하여 연속가압성형법으로 연속섬유 강화 GF/PC 복합재 평판을 제조하였다. PC 분자량에 따른 용융지수를 측정 및 평가하였고, GF 제직물 강화 GF/PC 복합재료의 인장강도, 굴곡강도, 압축강도 및 기공체적률을 평가하였다. 전계방사형 주사전자현미경을 이용하여 인장파괴된 GF/PC 복합재료의 형태를 분석하여 파괴거동을 확인하였다. 분자량이 20,000일 때 최적의 기계적 특성이 발현되는 것을 확인하였다.

천연 인디고를 활용한 Digital Textile Printing용 잉크의 성능 분석 (Performance Analysis of Ink for Digital Textile Printing Using Natural Indigo)

  • 이원경;성은지;문종렬;안인용;윤광호;박윤철;김종훈
    • 한국염색가공학회지
    • /
    • 제33권4호
    • /
    • pp.202-209
    • /
    • 2021
  • Natural dyes are more expensive than synthetic dyes and the dyeing process, which is mainly immersion of dye, is complicated. For this reason, relatively small-scale production methods were predominant. However, awareness and interest in environmental sustainability is rising globally, and the use of synthetic dyes causes various environmental problems such as wastewater and CO2 emission, so the consumption of natural dyes is increasing. In addition, interest in digital textile printing, an eco-friendly dyeing method that can produce products of various designs and uses less water, is growing. In this study, natural indigo dye (Indigofera tinctoria) was used as a raw material for Digital Textile Printing ink, and 14C (Biocarbon) present in it was measured to confirm whether it was derived from natural ingredients. The performance was confirmed by testing the pH, viscosity, electrical conductivity, surface tension, and particle size analysis of natural indigo ink. In addition, the performance of natural indigo DTP ink and printing fabric was evaluated by inspecting the change in color fastness and corresponding index substances before and after digital printing with natural indigo DTP ink on textiles. Through this, the possibility of commercialization of DTP ink and printing fabric using natural indigo was confirmed.