• 제목/요약/키워드: surface finishing method

검색결과 219건 처리시간 0.025초

초음파 케비테이션을 이용한 디버링 기술 (Deburring Technology Using Ultrasonic Cavitation)

  • 원종률;최영재;이석우;최헌종
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1798-1803
    • /
    • 2003
  • Surface and edge finishing processes are important technological operations of in parts machining. Quality of the finished parts directly affect the performance of the whole product. Especially, edge quality, which depends on burr control, is extremely important. Burrs are undesirable projections of the material beyond the edge of the workpiece. A number of deburring processes have been developed such as barreling, brushing, chemical methods etc. But, there are only few publications in the area of applying ultrasonics to deburring. When ultrasonic vibration propagates in the liquid medium, a large number of bubbles are formed. These bubbles generate an extremely strong force, which can be used to remove burrs. Cavitation is used as a term to describe the erosion of parts caused by the action of cavities in liquid. The object of this study is to analyze the effects of ultrasonic cavitation in the deburring process. For this purpose, we introduce a new ultrasonic cavitation method, which efficiently removes the burrs. Experimental parameters to verify the deburring effects of ultrasonic cavitations are ultrasonic power, amplitude, distant of the transducer from the workpiece, deburring time and abrasive. It has been shown that deburring with ultrasonic cavitation in water is effective to burrs.

  • PDF

카플링제를 도입한 탄소섬유/나일론 6 복합재료의 기계적 성질(II) -복합재료의 계면강도 증가- (Mechanical Properties of Carbon Fiber/Nylon 6 Composite Introducing Coupling Agent (II) -Increasing Interfacial Strength of Composite-)

  • Park, Chan Hun;Lee, Yang Hun;Shin, Eun Joo
    • 한국염색가공학회지
    • /
    • 제9권4호
    • /
    • pp.47-53
    • /
    • 1997
  • To improve the interfacial bonding of carbon fiber-nylon 6 composite, carbon fiber(CF) were oxidized by nitric acid treatment, and two types of graft polymer(GP) of nylon 6-g-polyacrylamide (PAAm) -water dispersable GP(WDGP) and m-cresol solu ble GP(CSGP) were treated as coupling agents. Introduction of polar groups such as -COOH, -OH, etc, on the surface of the oxidized CF was confirmed by IR spectra. The stem polymer of nylon 6 in the coupling agent (GP) could be compatible with'matrix nylon 5, and the grafted branch of PAAm on GP could react to the polar groups on the oxidized CF in composite. The interfacial strength was measured by the transverse tensile test to the fiber direction for single CF embedded nylon 6 film especially prepared and by the pull-out test method. The interfacial strength of the composite reinforced with oxidized CF is greater than that reinforced with unoxidized CF. The interfacial strength of the composite was increased by treatment of coupling agents(GPs) considerably, and the increasing tendency by the WDGP is greater than that by the CSGP. The optimum conditions of coupling agent treatment are as follows: the concentration, adsorption tlme of GP, and curing temperature are 2%, 20 minutes, and $170^{\circ}$, respectively.

  • PDF

피혁봉재에 있어서 부직포 접착심지의 접착방법에 관한 연구 (A Study on the Adhesive Condition of the Nonwoven Fabrics in Sewing of the Leather)

  • 김영자
    • 한국의류학회지
    • /
    • 제5권2호
    • /
    • pp.35-40
    • /
    • 1981
  • This study aims at finding appropriate adhesive conditions with special regard the material of 'fusible padding cloth inter ling' was frequently used for leather. As for leather material, pig suede, sheep suede were selected and drum dyed, cow split, napa have also been used. Mixed spinning non-woven fabric (polyester $50\%$, nylon $50\%$) were used as for padding cloth. Experimental appearance has been observed under the following adhesive conditions: Temperature of press were devided four levers; $120^{\circ}C$, $130^{\circ}C$, $140^{\circ}C$, $150^{\circ}C$, respectively. Adhesive time has been limited 5, 10, 15 second each. And the pressure has been conditioned as $0.2kg/cm^2$ continuously. After all this experiment, it was discovered that the material which had long contact with low temperature conditions has similar adhesive power to material that has short contact with high temperature conditions. There is a great difference according to the leather's dying process, the finishing method of the cloth, and the part of leather surface. The best condition for suede are $140^{\circ}C$, $150^{\circ}C$, at 10 seconds. and for D/D, NAPA, $130^{\circ}C$, at 10 seconds. Although the conditions of $150^{\circ}C$, at 15 seconds was possible for split, the process time can be shortened according to the increase of temperature.

  • PDF

반도체형 고분자를 이용한 태양전지섬유 (A solar Cell Fiber using Semi-conductive Polymers)

  • 송준형;김주용
    • 한국염색가공학회지
    • /
    • 제20권1호
    • /
    • pp.44-47
    • /
    • 2008
  • Organic semi-conductive materials have characteristics such as the advantages of easy formability, low-cost and diversity along with moderate semi-conductive properties. In this paper, we developed a flexible organic-inorganic hybrid solar cell fiber. First, we made a solar cell on the glass and attached the solar cell on the glass fiber similarly. In the latter case, thermal deposition method was employed in order to effectively apply ITO onto fiber surface. The amount of ITO was controlled by varying the temperature from 25, 150 to $300^{\circ}C$. Optimum result was obtained at $150^{\circ}C$ where maximize the deposition amount without significant decomposition of ITO. Despite of maximum open circuit voltage of 0.39V, the resulting current was quite unstable and weak, limiting realistic applications. It was, however, concluded that the flexible solar cell fiber developed showed a possibility of low-weight application from functional clothing for military to space suit mainly due to flexibility and thus wear ability.

나노 탄화규소(SiC) 슬러리로 코팅된 메타-아라미드 직물의 특성 (Characteristics of Meta-aramid Fabrics Coated with Slurry of Nanoscale SiC Particles)

  • 박종현;이선영;원종성;이응보;김의화;이승구
    • 한국염색가공학회지
    • /
    • 제29권3호
    • /
    • pp.131-138
    • /
    • 2017
  • Most of high performance fabrics for the car racing protective clothing have been developed to have thermal resistance, flame retardant property, impact resistance and anti-frictional properties to protect the racer from the crucial accident. In this study, the meta-aramid fabric, which has inherent flame retardant, was coated with nanoparticles of SiC to enhance the impact resistance and anti-friction properties. Uniform coating of the nanoparticles onto the fabrics was obtained by using tape casting method. As the experimental parameters, size and content of the SiC nanoparticle were varied with the coating conditions of the fabric surface. The effects of the nanoparticle coating on the properties of meta-aramid fabric were examined with various instrumental analyses such as SEM, tensile strength and abrasion test.

아로마틱 고분자를 적용한 기능성 PET 가공사 제조 및 특성 (Preparation and Properties of Functional PET Textured Yarn Coated with Aromatic Polymer)

  • 안다정;최철훈;이재웅;이상오
    • 한국염색가공학회지
    • /
    • 제29권3호
    • /
    • pp.148-154
    • /
    • 2017
  • Many researches have been made on the processing technology of Poly(ethylene terephthalate) (PET), which is widely used for clothing and non-clothing applications. In this study, we coated PET filaments with m-aramid resin to improve heat resistance and antimicrobial properties. In order to enhance adhesion between PET and m-aramid polymer, the adhesive polymer was coated on the PET filaments using a winding speed of 100m/min and then treated with m-aramid. Scanning electron microscopy was used to analyze the surface of the adhesive polymer and m-aramid treated PET filament. The change of initial degradation temperature according to treatment was confirmed by thermogravimetric analysis. Antimicrobial activity analysis using bacterial reduction method showed that PET filament treated with adhesive polymer and m-aramid had an increased antibacterial effect compared to untreated PET filament.

Practical investigation of a monopod fabrication method and the numerical investigation of its up-righting process

  • Hafez, Khaled A.;Ismael, Maged M.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제5권3호
    • /
    • pp.431-453
    • /
    • 2013
  • The principal purpose of this paper is to present a novel two phases rational scenario applied in constructing an offshore monopod platform; in which the two phases are the all-ground horizontal construction phase and the post-construction phase. Concerning the all-ground construction phase, a brief investigation of its different stages, i.e., pre-fabrication, fabrication, pre-assembling, positioning, assembling, and surface finishing is introduced. The important practical aspects of such construction phase are investigated without going into the nitty-gritty of the details involved therein. Concerning the post-construction phase, a clear investigation of its sequential stages, i.e., lifting, moving and up-righting is introduced. A finite element model (FEM) of the monopod platform is created to perform the structural analysis necessary to decide the suspension points/devices and the handling scenario during the various stages of the post-construction phase on a rational wise. Such structural analysis is performed within the framework of the three dimensional quasi-static modeling and analysis aiming at simulating the realistic handling condition, and hence introducing a reliable physical interpretation of the numerical results. For the whole effort to be demonstrated efficiently, the results obtained are analyzed, the conclusions are presented, and few related recommendations are suggested.

젤라틴 전처리 면직물의 에탄올-물 혼합용매에 의한 코치닐 염색성 향상 (Improving the Dyeability of Gelatin Pretreated Cotton Fabrics Dyeing with Cochineal in Ethanol-Water Mixture)

  • 하수영;장정대
    • 한국염색가공학회지
    • /
    • 제31권3호
    • /
    • pp.127-134
    • /
    • 2019
  • Cotton fabrics were treated with gelatin to improved their dyeability, color strength toward cochineal dye. Gelatin were used as the protein. Gelatin is containing a large number of hydrophilic groups. Pad-dry-cure method was used for the treatment process(10g/L concentration). The scanning electron micrograph showed the gelatin was deposited on the surface of cotton. Pretreated fabrics were mordanted with 10%(owf) alum. Then the fabrics were dyed with cochineal. Compared with original cotton fabric the K/S value with cochineal dyes was significantly improved on gelatin modified cotton. Treating cotton with 10g/L concentration gelatin offered higher cochineal adsorption. The dyeability of pH 4 yielded the highest color strength. In dyebaths of a ratio of ethanol and water such as; 10:0, 9:1, 8:2, 7:3, 6:4, 5:5, 4:6, 3:7, 2:8, 1:9, 0:10, fabrics were dyed. The ratio of ethanol and water had powerful effects on solution polarity. Cochineal dye uptake showed maximum value, when the proportion of ethanol and water was 9:1. Dyeing at increased temperatures and with increased time resulted in higher dye uptake and reddish-purple color(5RP). The washing fastness was 1-2grade, and the fastness to light was 2-3grade.

엔드밀 원형 가공 시 런아웃에 따른 가공조건 최적화 (Optimization of Processing Conditions According to Run-out During End-mill Round Machining)

  • 이하늘;최희관;김영신;전의식
    • 한국기계가공학회지
    • /
    • 제20권1호
    • /
    • pp.57-65
    • /
    • 2021
  • With the increased utilization of CAM programs, end-mill processing is most commonly used for machining and metal processing. In particular, hole or shaft machining has high assembly precision, which inevitably leads to high utilization of end mills. However, the analysis of quality characteristics according to the process conditions of end mills is not performed systematically at the site, causing poor quality and productivity. The most influential factor of quality is the runout of the end mill. In this paper, the number of turns of the end mill, number of tool blades, cutting direction, and artificial runout volume were determined to identify the correlation between the epicenter, cylindricality, and surface roughness. Two types of end mills, three levels of runout, three levels of rotational speed, and two cutting directions were considered and 36 rounds of hole processing were conducted. For the analysis of shape characteristics according to the set process variables, the experimental planning method was applied to the measured specimen and the processing characteristics were analyzed according to the runout of the end mill through correlation analysis.

ODDMAC를 이용한 항균성 및 발수성 동시 발현이 가능한 기능성 PET 섬유 (Antimicrobial and Water Repellency Effect of Functional PET Fibers with ODDMAC(octadecyldimethyl(3-triethoxy silylpropyl) ammonium chloride))

  • 양희진;전혜지;이상오;이재웅
    • 한국염색가공학회지
    • /
    • 제32권4호
    • /
    • pp.265-273
    • /
    • 2020
  • In this study, octadecyldimethyl(3-triethoxy silylpropyl)ammonium chloride (ODDMAC) incorporated with Polyethylene terephthalate (PET) fabrics with different environmental conditions such as various temperature and time intervals. First, ODDMAC (15 weight %) was dissolved in ethanol. Then PET fabrics immersed in the ODDMAC solution at 25 ℃ for 10 minutes and dried at 80 ℃ for 5 minutes. The dried PET/PDDMAC fabrics carried out for curing process out at 110 ℃ ~ 190 ℃. The treated PET/ODDMAC has examined the surface and side coating properties through SEM analysis and elemental analysis. PET/ODDMAC fabric washed with water up to 50 times and studied the durability of the materials. It was confirmed that the treated PET fabric also exhibited good water repellency. In addition, the antimicrobial activity against the gram-positive bacteria Staphylococcus aureus and gram-negative bacteria Escherichia coli were studied by the disc diffusion method on the treated fabric.