• Title/Summary/Keyword: surface degradation

검색결과 1,521건 처리시간 0.03초

Postulated release profile of recombinant human bone morphogenetic protein-2 (rhBMP-2) from demineralized dentin matrix

  • Um, In-Woong;Ku, Jeong-Kui;Lee, Bu Kyu;Yun, Pil-Young;Lee, Jeong Keun;Nam, Jeong-Hun
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제45권3호
    • /
    • pp.123-128
    • /
    • 2019
  • Demineralized dentin matrix (DDM) has been used as a recombinant human bone morphogenetic protein-2 (rhBMP-2) carrier in many clinical trials. To optimize the clinical safety and efficacy of rhBMP-2 with DDM, efforts have been made to improve the delivery of rhBMP-2 by 1) lowering the administered dose, 2) localizing the protein, and 3) prolonging its retention time at the action site as well as the bone forming capacity of the carrier itself. The release profile of rhBMP-2 that is associated with endogenous BMP in dentin has been postulated according to the type of incorporation, which is attributed to the loosened interfibrillar space and nanoporous dentinal tubule pores. Physically adsorbed and modified, physically entrapped rhBMP-2 is sequentially released from the DDM surface during the early stage of implantation. As DDM degradation progresses, the loosened interfibrillar space and enlarged dentinal tubules release the entrapped rhBMP-2. Finally, the endogenous BMP in dentin is released with osteoclastic dentin resorption. According to the postulated release profile, DDM can therefore be used in a controlled manner as a sequential delivery scaffold for rhBMP-2, thus sustaining the rhBMP-2 concentration for a prolonged period due to localization. In addition, we attempted to determine how to lower the rhBMP-2 concentration to 0.2 mg/mL, which is lower than the approved 1.5 mg/mL.

터널라이닝 표면에 부착된 발열체로 인한 라이닝의 온도변화 현장실험 (Field Test of Tunnel Lining Temperature Variation due to Heating Element Attached to Tunnel Lining Surface)

  • 진현우;황영철
    • 한국지반환경공학회 논문집
    • /
    • 제20권4호
    • /
    • pp.17-21
    • /
    • 2019
  • 국내 한랭지역의 경우 고속도로터널 및 일반도로터널에서 발생하는 동결피해 사례는 조사 및 보고되고 있지만, 이에 대한 방안대책은 미흡한 상황이다. 한랭지역의 경우 영상권을 유지하는 다른 지역들과는 달리 평균온도가 영하로 떨어지는 지역이며, 동일지역 터널 내에서도 기온이 낮은 입출구에서 손상이 좀 더 발생하는 것으로 조사 되었다. 터널 라이닝의 온도저하를 방지하기 위하여 동절기에 라이닝의 온도를 강제로 상승시킬 수 있는 발열체를 제작하였다. 발열체는 실규모 터널의 라이닝에 부착하여 발열체의 열에 의한 터널 라이닝 주변의 온도변화를 측정하였다. 연구결과 발열체의 발열에 의해 라이닝의 온도상승 정도를 확인하였으며, 일정시간이 경과하면 라이닝의 온도상승이 수렴하는 것으로 나타났다. 이러한 결과를 활용하여 동절기 터널라이닝 및 배면의 동결피해를 줄일 수 있음을 확인하였다.

An Enzymolysis-Assisted Agrobacterium tumefaciens-Mediated Transformation Method for the Yeast-Like Cells of Tremella fuciformis

  • Wang, Yuanyuan;Xu, Danyun;Sun, Xueyan;Zheng, Lisheng;Chen, Liguo;Ma, Aimin
    • Mycobiology
    • /
    • 제47권1호
    • /
    • pp.59-65
    • /
    • 2019
  • Agrobacterium tumefaciens-mediated transformation (ATMT), as a simple and versatile method, achieves successful transformation in the yeast-like cells (YLCs) of Tremella fuciformis with lower efficiency. Establishment of a more efficient transformation system of YLCs is important for functional genomics research and biotechnological application. In this study, an enzymolysis-assisted ATMT method was developed. The degradation degree of YLCs depends on the concentration and digestion time of Lywallzyme. Lower concentration (${\leq}0.1%$) of Lywallzyme was capable of formation of limited wounds on the surface of YLCs and has less influence on their growth. In addition, there is no significant difference of YLCs growth among groups treated with 0.1% Lywallzyme for different time. The binary vector pGEH under the control of T. fuciformis glyceraldehyde-3-phosphate dehydrogenase gene (gpd) promoter was utilized to transform the enzymolytic wounded YLCs with different concentrations and digestion time. The results of PCR, Southern blot, quantitative real-time PCR (qRT-PCR) and fluorescence microscopy revealed that the T-DNA was integrated into the YLCs genome, suggesting an efficient enzymolysis-assisted ATMT method of YLCs was established. The highest transformation frequency reached 1200 transformants per $10^6$ YLCs by 0.05% (w/v) Lywallzyme digestion for 15 min, and the transformants were genetically stable. Compared with the mechanical wounding methods, enzymolytic wounding is thought to be a tender, safer and more effective method.

Use of Fish Oil Nanoencapsulated with Gum Arabic Carrier in Low Fat Probiotic Fermented Milk

  • Moghadam, Farideh Vahid;Pourahmad, Rezvan;Mortazavi, Ali;Davoodi, Daryoush;Azizinezhad, Reza
    • 한국축산식품학회지
    • /
    • 제39권2호
    • /
    • pp.309-323
    • /
    • 2019
  • Fish oil consists of omega-3 fatty acids which play an important role in human health. Its susceptibility to oxidation causes considerable degradation during the processing and storage of food products. Accordingly, encapsulation of this ingredient through freeze drying was studied with the aim of protecting it against environmental conditions. Gum arabic (GA) was used as the wall material for fish oil nanoencapsulation where tween 80 was applied as the emulsifier. A water-in-oil (W/O) emulsion was prepared by sonication, containing 6% fish oil dispersed in aqueous solutions including 20% and 25% total wall material. The emulsion was sonicated at 24 kHz for 120 s. The emulsion was then freeze-dried and the nanocapsules were incorporated into probiotic fermented milk, with the effects of nanocapsules examined on the milk. The results showed that the nanoparticles encapsulated with 25% gum arabic and 4% emulsifier had the highest encapsulation efficiency (EE) (87.17%) and the lowest surface oil (31.66 mg/100 kg). Using nanoencapsulated fish oil in fermented milk significantly (p<0.05) increased the viability of Lactobacillus plantarum as well as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) contents. The fermented milk sample containing fish oil nanoencapsulated with 25% wall material and 4% emulsifier yielded the greatest probiotic bacterial count (8.41 Log CFU/mL) and the lowest peroxide value (0.57 mEq/kg). Moreover, this sample had the highest EPA and DHA contents. Utilizing this nanoencapsulated fish oil did not adversely affect fermented milk overall acceptance. Therefore, it can be used for fortification of low fat probiotic fermented milk.

돼지 사체의 혐기적 고온 매몰퇴비화법에서의 악취발생 특성 (Odor emission characteristics in anaerobic high temperature burial composting of swine carcasses)

  • 양우영;이진영;최연주;류희욱;채정석;전준민
    • 실내환경 및 냄새 학회지
    • /
    • 제16권2호
    • /
    • pp.187-198
    • /
    • 2017
  • It is very important to treat infected livestock carcasses safely and quickly. In this study, the degradation characteristics and odor generation characteristics of carcasses were investigated during the treatment of swine carcasses using the anaerobic burial composting method. While the carcasses were decomposed, the temperature remained high, at $40{\sim}55^{\circ}C$ on average, and most of the carcasses were decomposed rapidly. The major odor-contributing substances in the buried composting method are sulfuric odor substances such as $H_2S$, $CH_3SH$, dimethyl sulfide (DMS) and dimethyl disulfide (DMDS), and the odor contribution of these substances is 93~99%. Among them, $CH_3SH$, which accounts for about 56~89% of odor contribution, was the most representative indicator substance. Despite the anaerobic digestion process, the methane concentration in the digestion process was as low as 0.5~0.8% at the burial point of the carcass. The odor and methane produced during the decomposition of the carcasses decreased considerably during the discharge to the surface layer through the buried layer consisting of compost. These results suggest that anaerobic high temperature burial composting is one of the most useful methods to treat carcasses of infected livestock.

수상 태양광 발전 부유체에 대한 풍하중과 파랑하중을 통한 전산 해석과 설계적 방법의 비교 연구 (Comparative Study of Effect of Wind and Wave Load on Floating PV: Computational Simulation and Design Method)

  • 이규한;최지웅;서지현;하호진
    • 한국기계가공학회지
    • /
    • 제18권11호
    • /
    • pp.9-17
    • /
    • 2019
  • Interest in renewable energy is rapidly growing around the world. One of the most popular renewable energy sources is solar power, and photovoltaic (PV) systems are the most representative route for generating solar energy. However, with the growing adoption of solar power systems, the demand for land on which to install these systems has increased, which has caused environmental degradation. Recently, floating PV systems have been designed to utilize idle water surface areas of dams, rivers, and oceans. Because floating PV systems will be exposed to harsh environmental stresses, the safety of such systems should be secured before installation. In this study, the structural robustness of a floating PV system was analyzed by conducting numerical simulation to investigate whether the system can withstand harsh environmental stresses, such as wind and wave loads. Additionally, conventional wind and wave load predictions based on the design method and the simulation results were compared. The comparison revealed that the design method overestimated wind and wave loads. The total drag of the PV system was significantly overestimated by the conventional design criteria, which would increase the cost of the mooring system. The simulation offers additional advantages in terms of identifying the robustness of the floating PV system because it considers real-world environmental factors.

해양 부이용 920 MHz 대역 안테나 (920 MHz Band Antenna for Marine Buoy)

  • 최형동;김성율;이성렬
    • 한국항행학회논문지
    • /
    • 제24권6호
    • /
    • pp.593-600
    • /
    • 2020
  • 해양 IoT 서비스를 위한 장치들은 해양 환경에 강인해야 한다. 특히 바닷물 속에 부유하는 전송 장치는 바닷물의 영향을 덜 받도록 설계되어야 한다. 본 연구에서는 전자 어구 실명제 모니터링 시스템에서 어구 상태를 감시하는 부이에 내장되는 안테나를 설계하고 제작한 결과를 보이고 있다. 안테나의 주파수 대역은 920 MHz이고, 부이의 초소형과 경량화를 위해 PCB 패턴 안테나 구조로 설계 제작되었다. 시뮬레이션 결과 제안한 안테나를 내장한 부이가 바닷물 속에 잠기는 정도가 심할수록 반사 계수 증 RF 특성이 저하되지만 빔의 방사 각도는 안테나 하층부에서 점점 상층부로 옮겨가는 것을 확인하였다. 즉 바닷물의 영향을 많이 받을수록 전파 성능은 저하되지만 방사 특성은 해양 IoT 서비스 환경에 적합하다는 것을 확인하였다. 향후 RF 성능을 개선할 수 있는 안테나 구조를 변경 설계하면 제안한 안테나와 부이는 LPWA (low power wide area) 기반 IoT 네트워크 구현에 기여할 것으로 기대된다.

효소 고정화막의 응용에 대한 총설 (Applications of Enzyme Immobilized Membranes: A Review)

  • 유정현;라즈쿠마 파텔;김종학
    • 멤브레인
    • /
    • 제31권6호
    • /
    • pp.393-403
    • /
    • 2021
  • 생체 내 변화에서 효소는 중요한 촉매이다. 효소의 안정성과 재사용성은 촉매 과정에서 중요한 요소이다. 적합한 기질에 효소 고정화는 특정 미세환경의 조성을 통해 효소 활동성을 높인다. 다양한 종류의 분리막이 각각의 생체적합성과 막 표면의 친수성/소수성 조절 용이도에 따라 기질로 사용되었다. 본 논문에서는 셀룰로스, 폴리아크릴로니트릴(PAN), 폴리디메틸실록산(PDMS), 폴리비닐리덴플루오라이드(PVDF), 폴리에테르설폰(PES) 고분자 분리막이 소개되고 토의되었다. 고정화 효소를 이용한 유기오염물의 생물적 분해는 제약 회사 및 섬유 회사 등에서 발생하는 오염물질을 친환경적으로 감소할 수 있는 방법이다. 효소 고정화 생물반응기(EMBR)로 기름의 가수분해를 제어할 수 있고 이를 통해 탄소 배출량 감소 및 환경오염을 줄일 수 있다. EMBR로 만들 수 있는 바이오에탄올과 바이오디젤은 화석 연료의 대체제이다.

Deuterium ion irradiation impact on the current-carrying capacity of DI-BSCCO superconducting tape

  • Rajput, M.;Swami, H.L.;Kumar, R.;Bano, A.;Vala, S.;Abhangi, M.;Prasad, Upendra;Kumar, Rajesh;Srinivasan, R.
    • Nuclear Engineering and Technology
    • /
    • 제54권7호
    • /
    • pp.2586-2591
    • /
    • 2022
  • In the present work, we have irradiated the DI-BSCCO superconducting tapes with the 100 keV deuterium ions to investigate the effect of ion irradiation on their critical current (Ic). The damage simulations are carried out using the binary collision approximation method to get the spatial distribution and depth profile of the damage events in the high temperature superconducting (HTS) tape. The point defects are formed near the surface of the HTS tape. These point defects change the vortex profile in the superconducting tape. Due to the long-range interaction of vortices with each other, the Ic of the tape degrades at the 77 K and self magnetic field. The radiation dose of 2.90 MGy degrades the 44% critical current of the tape. The results of the displacement per atom (dpa) and dose deposited by the deuterium ions are used to fit an empirical relation for predicting the degradation of the Ic of the tape. We include the dpa, dose and columnar defect terms produced by the incident particles in the empirical relation. The fitted empirical relation predicts that light ion irradiation degrades the Ic in the DI-BSCCO tape at the self field. This empirical relation can also be used in neutron irradiation to predict the lifetime of the DI-BSCCO tape. The change in the Ic of the DI-BSCCO tape due to deuterium irradiation is compared with the other second-generation HTS tape irradiated with energetic radiation.

Ginsenoside Rd protects cerebral endothelial cells from oxygen-glucose deprivation/reoxygenation induced pyroptosis via inhibiting SLC5A1 mediated sodium influx

  • Li, Suping;Yu, Nengwei;Xu, Fei;Yu, Liang;Yu, Qian;Fu, Jing
    • Journal of Ginseng Research
    • /
    • 제46권5호
    • /
    • pp.700-709
    • /
    • 2022
  • Background: Ginsenoside Rd is a natural compound with promising neuroprotective effects. However, the underlying mechanisms are still not well-understood. In this study, we explored whether ginsenoside Rd exerts protective effects on cerebral endothelial cells after oxygen-glucose deprivation/reoxygenation (OGD/R) treatment and its potential docking proteins related to the underlying regulations. Method: Commercially available primary human brain microvessel endothelial cells (HBMECs) were used for in vitro OGD/R studies. Cell viability, pyroptosis-associated protein expression and tight junction protein degradation were evaluated. Molecular docking proteins were predicted. Subsequent surface plasmon resonance (SPR) technology was utilized for validation. Flow cytometry was performed to quantify caspase-1 positive and PI positive (caspase-1+/PI+) pyroptotic cells. Results: Ginsenoside Rd treatment attenuated OGD/R-induced damage of blood-brain barrier (BBB) integrity in vitro. It suppressed NLRP3 inflammasome activation (increased expression of NLRP3, cleaved caspase-1, IL-1β and GSDMD-N terminal (NT)) and subsequent cellular pyroptosis (caspase-1+/PI + cells). Ginsenoside Rd interacted with SLC5A1 with a high affinity and reduced OGD/R-induced sodium influx and potassium efflux in HBMECs. Inhibiting SLC5A1 using phlorizin suppressed OGD/R-activated NLRP3 inflammasome and pyroptosis in HBMECs. Conclusion: Ginsenoside Rd protects HBMECs from OGD/R-induced injury partially via binding to SLC5A1, reducing OGD/R-induced sodium influx and potassium efflux, thereby alleviating NLRP3 inflammasome activation and pyroptosis.