• Title/Summary/Keyword: surface deflection

Search Result 418, Processing Time 0.023 seconds

Experimental Study for Shear Behavior of RC Beam Strengthened with Channel-type FRP Beam (채널형 FRP빔으로 보강된 RC보의 전단거동에 관한 실험적 연구)

  • Hong, Ki-Nam
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.3
    • /
    • pp.39-46
    • /
    • 2009
  • A recent and promising method for shear strengthening of reinforced concrete(RC) members is the use of near surface mounted(NSM) fiber reinforced polymer(FRP) reinforcement. In the NSM method, the reinforcement is embedded in grooves cut onto the surface of the member to be strengthened and filled with an appropriate binding agent such as epoxy paste or cement grout. This paper illustrates a research program on shear strengthening of RC beams with NSM channel-type FRP beams which is developed in this study. The objective of this study is to clarify the role of channel-type FRP beam embedded to the beam web for shear strengthening of reinforced concrete beams. Included in the study are effectiveness in terms of spacing and angle of channel-type FRP beams, strengthening method, and shear span ratio. the study also aims to understand the additional shear capacity due to glass fiber reinforced polymer beams and carbon reinforced polymer beams. And anther objective is to study the failure modes, shear strengthening effect on ultimate force and load deflection behavior of RC beams embedded with channel-type FRP beams on the shear region of the beams.

A study on the optimal conditions for machining accuracy when endmill fillet cutting at the corner (코너부 모깍기 엔드밀가공시 가공정밀도의 최적조건에 관한 연구)

  • Choi, Sung-Yun;Kwon, Dae-Gyu;Park, In-Su;Wang, Duck-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.4
    • /
    • pp.101-108
    • /
    • 2016
  • Endmill fillet cutting at the corner was conducted with the online measurement of cutting forces and tool deflection by a tool dynamometer and an eddy current sensor system. The profile of the machined surface was also compared with the CAD profile with a Coordinate Measuring Machine (CMM) and CALYPSO software. It was found that the end mill cutter with four blades has a better surface profile than that with two blades, and the cutting forces and tool deformation were increased as the cutting speed was increased. When the tool located at the degree $45^{\circ}$ corner was found to conduct the maximum cutting force than started to the point of the workpiece. As it was compared with the CMM and ANOVA analysis result in the case that the cutting force and tool deformation was the maximum, it was found that the result was affected by the spindle speed and the number of blades.

Design of Reconfigurable Flight Control Law Using Neural Networks (신경회로망을 이용한 재형상 비행제어법칙 설계)

  • 김부민;김병수;김응태;박무혁
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.7
    • /
    • pp.35-44
    • /
    • 2006
  • When control surface failure occurs, it is conventional to correct a current control or to transform to other control. In this paper, instead of adopting a conventional way, a reconfiguration method which compensate the failure with alternative control surface deflection, depending on the level of failure, by using neural network and PCH(Pseudo-Control Hedging). The Conroller is designed of inner-loop(SCAS : Stability Command Augmentation System) with DMI(Dynamic Model Inversion) and outer-loop with Y axis acceleration feedback for a coordinate turn. Additionally, double PCH method was adopted to prevent actuator saturation and input command was generated to compensate for failure. At the end, The feasibility of the method is validated with randomly selected failure scenarios.

Nano-Kenaf Cellulose Effects on Improved Mechanical Properties of Polypropylene Composite (나노 케냐프 셀룰로오스가 폴리프로필렌 복합소재의 물성 증가에 미치는 영향)

  • Oh, Jeong Seok;Lee, Seong-Hoon;Bumm, Sughun;Kim, Kwang-Jea
    • Polymer(Korea)
    • /
    • v.37 no.5
    • /
    • pp.613-617
    • /
    • 2013
  • The effects of nano size kenaf cellulose fiber on mechanical property of polypropylene (PP) composite were investigated. The addition of nano-kenaf in place of natural kenaf showed higher tensile strength, flexural strength, impact strength, and heat deflection temperature compared to the natural kenaf filled PP composite, while it shows lower melt flow index, elongation%, and flexural modulus. These seemed to be due to the increased surface area of nano-kenaf fiber contacting PP matrix and reduced impurities such as volatile extractives on the fiber surface.

Fracture Toughness and Crack Growth Resistance of the Fine Grain Isotropic Graphite

  • Kim, Dae-Jong;Oh, Seung-Jin;Jang, Chang-Heui;Kim, In-Sup;Chi, Se-Hwan
    • Carbon letters
    • /
    • v.7 no.1
    • /
    • pp.19-26
    • /
    • 2006
  • Three point bending tests of single edge notched beam (SENB) specimens were carried out to evaluate the fracture behavior of the fine-grain isotropic nuclear grade graphite, IG-11. To measure the crack initiation point and the subsequent crack growth, the direct current potential drop (DCPD) method and a traveling microscope were used. The effects of test variables like initial crack length, specimen thickness, notch type and loading rate on the measured fracture toughness, $K_Q$, were investigated. Based on the test results, the ranges of the test variables to measure the reliable fracture toughness value were proposed. During the crack growth, the rising R-curve behavior was observed in IG-11 graphite when the superficial crack length measured on the specimen surface was used. The increase of crack growth resistance was discussed in terms of crack bridging, crack meandering, crack branching, microcracking and crack deflection, which increase the surface energy and friction force.

  • PDF

Dynamic interaction analysis of actively controlled maglev vehicles and guideway girders considering nonlinear electromagnetic forces

  • Min, Dong-Ju;Lee, Jun-Seok;Kim, Moon-Young
    • Coupled systems mechanics
    • /
    • v.1 no.1
    • /
    • pp.39-57
    • /
    • 2012
  • This study intends to explore dynamic interaction behaviors between actively controlled maglev vehicle and guideway girders by considering the nonlinear forms of electromagnetic force and current exactly. For this, governing equations for the maglev vehicle with ten degrees of freedom are derived by considering the nonlinear equation of electromagnetic force, surface irregularity, and the deflection of the guideway girder. Next, equations of motion of the guideway girder, based on the mode superposition method, are obtained by applying the UTM-01 control algorithm for electromagnetic suspension to make the maglev vehicle system stable. Finally, the numerical studies under various conditions are carried out to investigate the dynamic characteristics of the maglev system based on consideration of the linear and nonlinear electromagnetic forces. From numerical simulation, it is observed that the dynamic responses between nonlinear and linear analysis make little difference in the stable region. But unstable responses in nonlinear analysis under poor conditions can sometimes be obtained because the nominal air-gap is too small to control the maglev vehicle stably. However, it is demonstrated that this unstable phenomenon can be removed by making the nominal air-gap related to electromagnetic force larger. Consequently it is judged that the nonlinear analysis method considering the nonlinear equations of electromagnetic force and current can provide more realistic solutions than the linear analysis.

A study on friction and stress analysis of wedge mount leveler in Semi-Conductor Sub-Fab (반도체 Sub-Fab 용 웨지 마운트 레벨러(Wdge Mount Leveler)의 마찰과 응력에 관한 연구)

  • Min, Kyung-Ho;Song, Ki-Hyeok;Hong, Kwang-Pyo
    • Design & Manufacturing
    • /
    • v.11 no.2
    • /
    • pp.25-28
    • /
    • 2017
  • Semiconductor equipment manufacturers desire to enhance efficiency of Sub Fab to increase semiconductor productivity. For this reason, Sub Fab equipment manufacturers are developing Integrated System that combined modules with multiple facilities. Integrated System is required to apply Mount Leveler of Wedge Type in compliance with weight increase compared with existing single equipment and product shape change. This thesis analyzes main design variables of components of Wedge Mount Leveler and carries out structure analysis using ANSYS, finite element analysis program Analysis shows that main design variables of components of Wedge Mount Leveler has self-locking condition by friction force of Wedge and adjusting bolt. Each friction force hinges upon Wedge angle and Friction Coefficient of contact surface and upon the thread angle and Friction Coefficient of contact surface. Also, as a result of carrying out structure analysis of Wedge Mount Leveler, deflection and stress appears in different depending on the height of the level.

3D Automatic Mesh Generation Scheme for the Boundary Element Method (경계요소법을 위한 3차원 자동요소분할)

  • Lee, H.B.;Lee, S.H.;Kim, H.S.;Lee, K.S.;Hahn, S.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.935-937
    • /
    • 1993
  • This paper presents a three dimensional automatic mesh generation scheme for the boundary element method, and this scheme can be applicable to practical problems of complex shape. The geometry of the problem is expressed as an assemblage of linear Coon's surfaces, and each surface is made up of four edge curves which are defined in the form of a parametric function. Curves are automatically segmented according to their characteristics. With these segments of curves, interior points and triangular mesh elements are generated in the parametric plane using Lindholm's method, and then their projection on the real surface forms the initial mesh. The refinement of initial mesh is performed so that the discrete triangular planes are close to the real continuous surfaces. The bisection method is used for the refinement. Finally, interior points in the refined mesh are rearranged so as to make each element be close with an equilateral triangle. An attempt has been made to apply the proposed method to a DY(Deflection Yoke) model.

  • PDF

Experimental investigation on shear capacity of RC beams with GFRP rebar & stirrups

  • Vora, Tarak P.;Shah, Bharat J.
    • Steel and Composite Structures
    • /
    • v.21 no.6
    • /
    • pp.1265-1285
    • /
    • 2016
  • This paper presents experimental results of advanced investigation carried out on the beams reinforced with Glass Fiber Reinforced Polymer (GFRP) rebar and stirrups. Twelve beams reinforced with GFRP and one beam with steel reinforcement of size $230{\times}300{\times}2000mm$ were investigated. Longitudinal reinforcement, shear span and spacing of stirrups were the main variables to form the set. In advanced testing three types of strain gauges for steel, composite and concrete surface were applied to observe strain/stress development against the applied load. Live data were recorded from four strain gauges applied on stirrups, one at center on longitudinal reinforcement, two on the concrete surface and central deflection during the test. Although the focus of the paper was mainly on the behavior of GFRP shear reinforcement, other parallel data were observed for the completeness of the test. Design recommendations of ISIS Canada Design Manual (2007), Japan Society of Civil Engineers (1997) and American Concrete Institute (ACI-440.1R-06) were reviewed. Shear design predictions were compared with experimental results in which it was observed that all the three standards provided conservative predictions. However, ACI found most efficient compare to other two there is room to improve the efficiency of the recommendations.

Probabilistic Strength at Serviceability Limit State for Normal and SBHS Slender Stiffened Plates Under Uniaxial Compression

  • Rahman, Mahmudur;Okui, Yoshiaki;Anwer, Muhammad Atif
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1397-1409
    • /
    • 2018
  • Stiffened plates with high slenderness parameters show large out-of-plane deflections, due to elastic buckling, which may occur before the plates reach their ultimate strength. From a serviceability point of view, restriction of out-of-plane deflections exceeding the fabrication tolerance is of primary importance. Compressive strength at the serviceability limit state (SLS) for slender stiffened plates under uniaxial stress was investigated through nonlinear elasto-plastic finite element analysis, considering both geometric and material nonlinearity. Both normal and high-performance steel were considered in the study. The SLS was defined based on a deflection limit and an elastic buckling strength. Probabilistic distributions of the SLS strengths were obtained through Monte Carlo simulations, in association with the response surface method. On the basis of the obtained statistical distributions, partial safety factors were proposed for SLS. Comparisons with the ultimate strength of different design codes e.g. Japanese Code, AASHTO, and Canadian Code indicate that AASHTO and Canadian Code provide significantly conservative design, while Japanese Code matches well with a 5% non-exceedance probability for compressive strength at SLS.