• Title/Summary/Keyword: surface defect detection

Search Result 137, Processing Time 0.033 seconds

Defect Detection of Steel Wire Rope in Coal Mine Based on Improved YOLOv5 Deep Learning

  • Xiaolei Wang;Zhe Kan
    • Journal of Information Processing Systems
    • /
    • v.19 no.6
    • /
    • pp.745-755
    • /
    • 2023
  • The wire rope is an indispensable production machinery in coal mines. It is the main force-bearing equipment of the underground traction system. Accurate detection of wire rope defects and positions exerts an exceedingly crucial role in safe production. The existing defect detection solutions exhibit some deficiencies pertaining to the flexibility, accuracy and real-time performance of wire rope defect detection. To solve the aforementioned problems, this study utilizes the camera to sample the wire rope before the well entry, and proposes an object based on YOLOv5. The surface small-defect detection model realizes the accurate detection of small defects outside the wire rope. The transfer learning method is also introduced to enhance the model accuracy of small sample training. Herein, the enhanced YOLOv5 algorithm effectively enhances the accuracy of target detection and solves the defect detection problem of wire rope utilized in mine, and somewhat avoids accidents occasioned by wire rope damage. After a large number of experiments, it is revealed that in the task of wire rope defect detection, the average correctness rate and the average accuracy rate of the model are significantly enhanced with those before the modification, and that the detection speed can be maintained at a real-time level.

The Development of Surface Inspection System Using the Real-time Image Processing (실시간 영상처리를 이용한 표면흠검사기 개발)

  • 이종학;박창현;정진양
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.171-171
    • /
    • 2000
  • We have developed m innovative surface inspection system for automated quality control for steel products in POSCO. We had ever installed the various kinds of surface inspection systems, such as a linear CCD and a laser typed surface inspection systems at cold rolled strips production lines. But, these systems cannot fulfill the sufficient detection and classification rate, and real time processing performance. In order to increase detection and classification rate, we have used the Dark, Bright and Transition Field illumination and area type CCD camera, and fur the real time image processing, parallel computing has been used. In this paper, we introduced the automatic surface inspection system and real time image processing technique using the Object Detection, Defect Detection, Classification algorithms and its performance obtained at the production line.

  • PDF

Metal Surface Defect Detection and Classification using EfficientNetV2 and YOLOv5 (EfficientNetV2 및 YOLOv5를 사용한 금속 표면 결함 검출 및 분류)

  • Alibek, Esanov;Kim, Kang-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.4
    • /
    • pp.577-586
    • /
    • 2022
  • Detection and classification of steel surface defects are critical for product quality control in the steel industry. However, due to its low accuracy and slow speed, the traditional approach cannot be effectively used in a production line. The current, widely used algorithm (based on deep learning) has an accuracy problem, and there are still rooms for development. This paper proposes a method of steel surface defect detection combining EfficientNetV2 for image classification and YOLOv5 as an object detector. Shorter training time and high accuracy are advantages of this model. Firstly, the image input into EfficientNetV2 model classifies defect classes and predicts probability of having defects. If the probability of having a defect is less than 0.25, the algorithm directly recognizes that the sample has no defects. Otherwise, the samples are further input into YOLOv5 to accomplish the defect detection process on the metal surface. Experiments show that proposed model has good performance on the NEU dataset with an accuracy of 98.3%. Simultaneously, the average training speed is shorter than other models.

The Scanning Laser Source Technique for Detection of Surface-Breaking and Subsurface Defect

  • Sohn, Young-Hoon;Krishnaswamy, Sridhar
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.3
    • /
    • pp.246-254
    • /
    • 2007
  • The scanning laser source (SLS) technique is a promising new laser ultrasonic tool for the detection of small surface-breaking defects. The SLS approach is based on monitoring the changes in laser-generated ultrasound as a laser source is scanned over a defect. Changes in amplitude and frequency content are observed for ultrasound generated by the laser over uniform and defective areas. The SLS technique uses a point or a short line-focused high-power laser beam which is swept across the test specimen surface and passes over surface-breaking or subsurface flaws. The ultrasonic signal that arrives at the Rayleigh wave speed is monitored as the SLS is scanned. It is found that the amplitude and frequency of the measured ultrasonic signal have specific variations when the laser source approaches, passes over and moves behind the defect. In this paper, the setup for SLS experiments with full B-scan capability is described and SLS signatures from small surface-breaking and subsurface flaws are discussed using a point or short line focused laser source.

Evaluation of Surface and Sub-surface defects in Railway Wheel Using Induced Current Focused Potential Drops (집중유도 교류 전위차법을 이용한 철도차량 차륜의 표면과 내부 결함 평가)

  • Lee, Dong-Hyung;Kwon, Seok-Jin
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.1 s.38
    • /
    • pp.1-6
    • /
    • 2007
  • Railway wheels in service are regularly checked by ultrasonic testing, acoustic emission and eddy current testing method and so on. However, ultrasonic testing is sometimes inadequate for sensitively detecting the cracks in railway wheel which is mainly because of the fact of crack closure. Recently, many researchers have actively fried to improve precision for defect detection of railway wheel. The development of a nondestructive measurement tool for wheel defects and its use for the maintenance of railway wheels would be useful to prevent wheel failure. The induced current focusing potential drop(ICFPD) technique is a new non-destructive tasting technique that can detect defects in railway wheels by applying on electro-magnetic field and potential drops variation. In the present paper, the ICFPD technique is applied to the detection of surface and internal defects for railway wheels. To defect the defects for railway wheels, the sensor for ICFPD is optimized and the tests are carried out with respect to 4 surface defects and 6 internal defects each other. The results show that the surface crack depth of 0.5 mm and internal crack depth of 0.7 mm in wheel tread could be detected by using this method. The ICFPB method is useful to detect the defect that initiated in the tread of railway wheels

Rail Surface Defect Detection System of Next-Generation High Speed Train (차세대 고속열차의 레일표면 결함 검출 시스템)

  • Choi, Woo-Yong;Kim, Jeong-Yeon;Yang, Il-Dong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.5
    • /
    • pp.870-876
    • /
    • 2017
  • In this paper, we proposed the automatic vision inspection system using multi-layer perceptron to detect the defects occurred on rail surface. The proposed system consists of image acquisition part and analysis part. Rail surface image is acquired as equal interval using line scan camera and lighting. Mean filter and dynamic threshold is used to reduce noise and segment defect area. Various features to characterize the defects are extracted. And they are used to train and distinguish defects by MLP-classifier. The system is installed on HEMU-430X and applied to analyze the rail surface images acquired from Honam-line at high speed up to 300 km/h. Recognition rate is calculated through comparison with manual inspection results.

On-line Surface Defect Detection using Spatial Filtering Method (공간필터법을 이용한 온라인 표면결함 계측)

  • Moon, Serng-Bae;Jun, Seung-Hwan
    • Journal of Navigation and Port Research
    • /
    • v.28 no.1
    • /
    • pp.43-49
    • /
    • 2004
  • Defects inspection of commodities are very important with those design and manufacturing process and essential to strengthen the competitiveness of those. If on-line automatic defects detection is performed without damaging to products, the production cost shall be curtailed through the reducing man-power, economical management of Q.C(Quality Control). In this paper, it is suggested three spatial filtering methods which can extract the necessary information in case of defects being on the surface of object like iron plate. In addition, the dependence of filtering characteristics on parameters such as the pitch and width of slits is analyzed and the surface defect detection system is constructed. Several experiments were carried out for determining the adequate spatial filtering method through comparing and analyzing effects of parameters like defect's size and shape, intensity of light, noise of coherent source and slit number.

Surface Defect Inspection System for Hot Slabs (열간 슬라브 표면결함 탐상 시스템)

  • Yun, Jong Pil;Jung, Daewoong;Park, Changhyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.8
    • /
    • pp.627-632
    • /
    • 2016
  • In this paper, we propose a new vision-based defect inspection system for the surface of hot slabs. To minimize the influence of self-emission from slab surfaces with high temperature, an optic method based on blue LED light and a blue pass filter is proposed. Because the slab surface is partially covered with scales, which are unavoidable oxidized substances caused during manufacturing, it is difficult to distinguish between vertical cracks and scale. In order to resolve this problem and to improve the detection performance, the use of a Gabor filter and dynamic programming are proposed. Finally, the effectiveness of the proposed method is shown by means of experiments conducted on images of hot slabs that were obtained from an actual slab production line.

Comparison of CNN Structures for Detection of Surface Defects (표면 결함 검출을 위한 CNN 구조의 비교)

  • Choi, Hakyoung;Seo, Kisung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.7
    • /
    • pp.1100-1104
    • /
    • 2017
  • A detector-based approach shows the limited performances for the defect inspections such as shallow fine cracks and indistinguishable defects from background. Deep learning technique is widely used for object recognition and it's applications to detect defects have been gradually attempted. Deep learning requires huge scale of learning data, but acquisition of data can be limited in some industrial application. The possibility of applying CNN which is one of the deep learning approaches for surface defect inspection is investigated for industrial parts whose detection difficulty is challenging and learning data is not sufficient. VOV is adopted for pre-processing and to obtain a resonable number of ROIs for a data augmentation. Then CNN method is applied for the classification. Three CNN networks, AlexNet, VGGNet, and mofified VGGNet are compared for experiments of defects detection.