• Title/Summary/Keyword: surface code

Search Result 995, Processing Time 0.03 seconds

Study on Pure Roll Test of a Ship Using CFD Simulation (CFD 해석을 활용한 선박의 순수 횡동요 시험 연구)

  • Thi Loan, Mai;Anh Khoa, Vo;Hyeon Kyu, Yoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.6
    • /
    • pp.338-344
    • /
    • 2022
  • Roll moment usually is ignored when analyzing the maneuverability of surface ships. However, it is well known that the influence of roll moment on maneuverability is significant for ships with small metacentric height such as container ships, passenger ships, etc. In this study, a pure roll test is performed to determine the hydrodynamic derivatives with respect to roll motion as added mass and damping. The target ship is an autonomous surface ship designed to carry containers with a small drift and large freeboard. The commercial code of STAR CCM+ software is applied as a specialized tool in naval hydrodynamic based on RANS equation for simulating the pure roll of the ship. The numerical uncertainty analysis is conducted to verify the numerical accuracy. By distinguishing the in-phase and out-of-phase from hydrodynamic forces and moments due to roll motion, added mass derivatives and damping derivatives relative to roll angular velocity are obtained.

Evaluation of Exposure Dose and Working Hours for Near Surface Disposal Facility

  • Yeseul Cho;Hoseog Dho;Hyungoo Kang;Chunhyung Cho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.4
    • /
    • pp.511-521
    • /
    • 2022
  • Decommissioning of nuclear power plants generates a large amount of radioactive waste in a short period. Moreover, Radioactive waste has various forms including a large volumes of metal, concrete, and solid waste. The disposal of decommissioning waste using 200 L drums is inefficient in terms of economics, work efficiency, and radiation safety. Therefore, The Korea Radioactive Waste Agency is developing large containers for the packaging, transportation, and disposal of decommissioning waste. Assessing disposability considering the characteristics of the radioactive waste and facility, convenience of operation, and safety of workers is necessary. In this study, the exposure dose rate of workers during the disposal of new containers was evaluated using Monte Carlo N-Particle Transport code. Six normal and four abnormal scenarios were derived for the assessment of the dose rate in a near surface disposal facility operation. The results showed that the calculated dose rates in all normal scenarios were lower than the direct exposure dose limitation of workers in the safety analysis report. In abnormal scenarios, the work hours with dose rates below 20 mSv·y-1 were calculated. The results of this study will be useful in establishing the optimal radiation work conditions.

Type Prediction of Stripped-envelope Supernovae by Wind-driven Mass Loss Progenitor Model

  • Jeong, Yongje;Yoon, Sung-Chul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.42.4-43
    • /
    • 2020
  • The hydrogen-rich envelope mass of a dying massive star is the key factor that determines the type and properties of the resulting supernova. Emulating wind-driven mass loss of single stars with the MESA(Modules for Experiments in Stellar Astrophysics) stellar evolution code, we made a grid of models for a large parameter space of initial mass (12 M⊙ to 30M⊙), metallicity (solar, LMC and SMC), hydrogen envelope mass (0.01M⊙ to 10M⊙) for progenitor stars in their final step of evolution. Our results suggest the final luminosity of the progenitor is largely determined by the initial mass, which means there is luminosity degeneracy for stars with the same initial mass but with different hydrogen-rich envelope masses. Since we can break this degeneracy by correcting luminosity with surface gravity (spectroscopic HR diagram), we can infer the exact mass property of an observed progenitor. The surface temperature drastically varies near the envelope mass of ~0.1M⊙ and surface temperature of ~10000 K, where the demarcation between the hydrogen-rich envelope and the helium core lies, which explains the rarity of 'white' supergiants. There also exists a discontinuity in the chemical composition of the progenitor envelope around this critical hydrogen-rich envelope mass of ~0.1 M⊙, which can be tested in future observations of "flash spectroscopy" of supernovae.

  • PDF

Numerical analysis of two and three dimensional buoyancy driven water-exit of a circular cylinder

  • Moshari, Shahab;Nikseresht, Amir Hossein;Mehryar, Reza
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.219-235
    • /
    • 2014
  • With the development of the technology of underwater moving bodies, the need for developing the knowledge of surface effect interaction of free surface and underwater moving bodies is increased. Hence, the two-phase flow is a subject which is interesting for many researchers all around the world. In this paper, the non-linear free surface deformations which occur during the water-exit of a circular cylinder due to its buoyancy are solved using finite volume discretization based code, and using Volume of Fluid (VOF) scheme for solving two phase flow. Dynamic mesh model is used to simulate dynamic motion of the cylinder. In addition, the effect of cylinder mass in presence of an external force is studied. Moreover, the oblique exit and entry of a circular cylinder with two exit angles is simulated. At last, water-exit of a circular cylinder in six degrees of freedom is simulated in 3D using parallel processing. The simulation errors of present work (using VOF method) for maximum velocity and height of a circular cylinder are less than the corresponding errors of level set method reported by previous researchers. Oblique exit shows interesting results; formation of waves caused by exit of the cylinder, wave motion in horizontal direction and the air trapped between the waves are observable. In 3D simulation the visualization of water motion on the top surface of the cylinder and the free surface breaking on the front and back faces of the 3D cylinder at the exit phase are observed which cannot be seen in 2D simulation. Comparing the results, 3D simulation shows better agreement with experimental data, specially in the maximum height position of the cylinder.

THD Analysis of a Surface Textured Parallel Thrust Bearing: Effect of Dimple Radius and Depth (Surface Texturing한 평행 스러스트 베어링의 열유체윤활 해석: 딤플 반경과 깊이의 영향)

  • Jeong, YoHan;Park, TaeJo
    • Tribology and Lubricants
    • /
    • v.30 no.5
    • /
    • pp.303-310
    • /
    • 2014
  • In order to reduce friction and improve reliability, researchers have applied various surface texturing methods to highly sliding machine elements such as mechanical seals and piston rings. Despite extensive theoretical research on surface texturing, previous numerical results are only applicable to isothermal and iso-viscous conditions. Because the lubricant flow pattern of textured bearing surfaces is much more complicated than that for non-textured bearings, the Navier?Stokes equation is more suitable than the Reynolds equation for the former. This study carries out a thermohydrodynamic (THD) lubrication analysis to investigate the lubrication characteristics of a single micro-dimpled parallel thrust bearing cell. The analysis involves using the continuity, Navier?Stokes, energy, temperature?viscosity relation, and heat conduction equations with the commercial computational fluid dynamics (CFD) code FLUENT. This study discretizes these equations using the finite volume method and solves them using the SIMPLE algorithm. The results include finding the streamlines, pressure and temperature distributions, and variations in the friction force and leakage for various dimple radii and depths. Increasing the dimple radius and decreasing the depth causes a recirculation flow to form because of a strong vortex, and the oil temperature greatly increases compared with the non-textured case. The present numerical scheme and results are applicable to THD analysis of various surface-textured sliding bearings and can lead to further study.

Effects of chemistry in Mars entry and Earth re-entry

  • Zuppardi, Gennaro
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.5
    • /
    • pp.581-594
    • /
    • 2018
  • This paper is the follow-on of a previous paper by the author where it was pointed out that the forthcoming, manned exploration missions to Mars, by means of complex geometry spacecraft, involve the study of phenomena like shock wave-boundary layer interaction and shock wave-shock wave interaction also along the entry path in Mars atmosphere. The present paper focuses the chemical effects both in the shock layer and on the surface of a test body along the Mars orbital entry and compares these effects with those along the Earth orbital re-entry. As well known, the Mars atmosphere is almost made up of Carbon dioxide whose dissociation energy is even lower than that of Oxygen. Therefore, although the Mars entry is less energized than the Earth re-entry, one can expect that the effects of chemistry on aerodynamic quantities, both in the shock layer and on a test body surface, are different from those along the Earth re-entry. The study has been carried out computationally by means of a direct simulation Monte Carlo code, simulating the nose of an aero-space-plane and using, as free stream parameters, those along the Mars entry and Earth re-entry trajectories in the altitude interval 60-90 km. At each altitude, three chemical conditions have been considered: 1) gas non reactive and non-catalytic surface, 2) gas reactive and non-catalytic surface, 3) gas reactive and fully-catalytic surface. The results showed that the number of reactions, both in the flow and on the nose surface, is higher for Earth and, correspondingly, also the effects on the aerodynamic quantities.

Study on Modeling the Spectral Solar Radiation Absorption Characteristics in Determining the surface Temperature of a Ground Object (지상물체의 표면온도 계산을 위한 파장별 태양복사 흡수특성 모델링 연구)

  • Choi, Jun-Hyuk;Gil, Tae-Jun;Kim, Tae-Kuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.1
    • /
    • pp.33-39
    • /
    • 2007
  • This paper is aimed at the development of a software that predicts the surface temperature profiles of three-dimensional objects on the ground by considering the spectral solar radiation through the atmosphere. The spectral solar radiation through the atmosphere is modeled by using the well-known LOWTRAN7 code which analyzes the detailed spectral transmission characteristics by considering the atmospheric gas layers. In this paper, the transient temperature distribution over a cylinder is calculated by using the semi-implicit method. The spectral radiative surface properties such as the absorptivity and emissivity of the objects are used to model the effects of the solar irradiation and the surface emission. Both the detailed spectral modeling and the simple total modeling for the solar radiation absorption show fairly good agreement with each other by showing less than 3% difference in surface temperature.

Aerodynamic Noise Analysis Using the Permeable Surface for UH-1H Rotor Blade in Hovering Flight Condition (UH-1H 로터 블레이드의 제자리 비행 시 투과면을 이용한 원방 소음 해석)

  • Kim, Ki Ro;Park, Min Jun;Park, Soo Hyung;Lee, Duck Joo;Park, Nam Eun;Im, Dong Kyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.5
    • /
    • pp.376-384
    • /
    • 2018
  • The aerodynamic far-field noise was computed by an acoustic analogy code using the permeable surface for the UH-1H rotor blade in hover. The permeable surface surrounding the blade was constructed to include the thickness noise, the loading noise, and the flow noise generated from the shock waves and the tip vortices. The computation was performed with compressible three-dimensional Euler's equations and Navier-Stokes equations. The high speed impulsive noise was predicted and validated according to the permeable surface locations. It is confirmed that the noise source caused by shock waves generated on the blade surface is a dominant factor in the far-field noise prediction.

Thermohydrodynamic Lubrication Analysis of Surface-Textured Parallel Slider Bearing: Effect of Dimple Depth (Surface Texturing한 평행 슬라이더 베어링의 열유체윤활 해석: 딤플 깊이의 영향)

  • Park, TaeJo;Kim, MinGyu
    • Tribology and Lubricants
    • /
    • v.33 no.6
    • /
    • pp.288-295
    • /
    • 2017
  • In order to improve the efficiency and reliability of the machine, the friction should be minimized. The most widely used method to minimize friction is to maintain the fluid lubrication state. However, we can reduce friction only up to a certain limit because of viscosity. As a result of several recent studies, surface texturing has significantly reduced the friction in highly sliding machine elements, such as mechanical seals and thrust bearings. Thus far, theoretical studies have mainly focused on isothermal/iso-viscous conditions and have not taken into account the heat generation, caused by high viscous shear, and the temperature conditions on the bearing surface. In this study, we investigate the effect of dimple depth and film-temperature boundary conditions on the thermohydrodynamic (THD) lubrication of textured parallel slider bearings. We analyzed the continuity equation, the Navier-Stokes equation, the energy equation, and the temperature-viscosity and temperature-density relations using a computational fluid dynamics (CFD) code, FLUENT. We compare the temperature and pressure distributions at various dimple depths. The increase in oil temperature caused by viscous shear was higher in the dimple than in the bearing outlet because of the action of the strong vortex generated in the dimple. The lubrication characteristics significantly change with variations in the dimple depths and film-temperature boundary conditions. We can use the current results as basic data for optimum surface texturing; however, further studies are required for various temperature boundary conditions.

2 Dimensional FEM Elastic Wave Modeling Considering Surface Topography (불규칙 지형을 고려한 2차원 유한요소 탄성파 모델링)

  • Lee, Jong-Ha;Suh, Jung-Hee;Shin, Chang-Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.4 no.2
    • /
    • pp.34-44
    • /
    • 2001
  • Forward modeling by construction of synthetic data is usually practiced in a horizontal surface and a few subsurface structures. However, in-situ surveys often take place in such topographic changes that the corrupted field data always make it difficult to interpret the right signals. To examine the propagation characteristic of elastic waves on the irregular surface, a general mesh generation code for finite element method was modified to consider the topography. By implementing this algorithm, the time domain modeling was practiced in some models with surface topography such as mound, channel, etc. The synthetic data obtained by receivers placed on surface also agreed with the analytic solution. The snapshots showing the total wave-field revealed the propagation characteristic of the elastic waves through complex subsurface structures and helped to identify the signals on the time traces. The transmission of Rayleigh waves along the surface, compressive waves, and sheer waves was observed. Moreover, it turned out that the Rayleigh waves behave like a new source at the edge.

  • PDF