• Title/Summary/Keyword: surface coating material

Search Result 896, Processing Time 0.029 seconds

Evaluation on Strengthening Capacities and Rebound Rate of Structures with Sprayed FRP (분사식 FRP에 의한 구조물의 보강 성능 및 반발률 평가)

  • Han, Seung-Chul;Yang, Jun-Mo;Yoon, Young-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.1
    • /
    • pp.193-202
    • /
    • 2008
  • This paper investigates experimentally the confining effect, strengthening capacity and rebound rate of sprayed Fiber-Reinforced-Polymer (SFRP). From the method, resin and chopped fibers are sprayed separately from the nozzle with high pressure, and then they are attached to the concrete surface, so structure could be repaired. To evaluate the strengthening effect of sprayed FRP, cylindrical specimens and beam specimens were strengthening with SFRP. As main material of FRP, glass fiber and polyester resin are used. To investigate the optimum condition of sprayed FRP, the effects of fiber length, coating thickness, fiber volume ratio and concrete strength were examined. Capacities of sprayed FRP method were also compared to the FRP sheet method. In case of the sprayed FRP, rebound rate is important parameter considering economical efficiency and constructibility, so rebound rate of was discussed. From the test results, optimum conditions of sprayed FRP were determined. SFRP method showed superior strengthening capacities than FRP sheet method.

Drying Characteristics by Infrared Heating of agricultural products (원적외선 가열에 의한 농산물의 건조특성)

  • Sang, Hie-Sun;Bae, Nae-Kyung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.8 no.1
    • /
    • pp.47-55
    • /
    • 2005
  • Infrared heating has been traditionally used in industrial applications for processes such as dehydration of food industrial. This heating method involves the application of radiation in the wavelength range of 2 to 50 micrometers. In this work, simultaneous heat balance equations were developed to simulate the infrared radiation heating of agricultural products. The equations assume that moisture diffuses to the outer boundaries of the material in liquid form and evaporation occurs at the surface of the agricultural products. Energy for moisture evaporation is supplied by the infrared radiant energy. The optimum temperature and drying time for the best drying conditions of changing the red peppers with the moisture content of 18% and the restore rate of 80~85% are $80^{\circ}C$ and 44 hours. The performance of radiation tubes coating with the radiation paint developed in this research has the energy of $2.27{\times}103W/m^2{\mu}m$, $150^{\circ}C$ within the scope of radiation wave length of $2{\sim}30{\mu}m$ and has the radiation 0.92~0.93, which is superior to the general radiation tubes. The extinction coefficient according to the band pass filter using the 4 flux theory ha higher dependability on wave length, accounting for $2{\sim}17{\mu}m$ and $5{\times}105{\sim}106m-1$. A comparison between the theoretical energy transfer whose figures are interpreted according to 4 flux theory and the experimental energy transfer of far infrared dryer leads to the findings of the agreement less than 5%.

  • PDF

Structural Evolution of ZnO:Ga Thin Film on Profiled Substrate Grown by Radio Frequency Sputtering

  • Sun, J.H.;Kim, J.H.;Ahn, B.G.;Park, S.Y.;Jung, E.J.;Lee, J.H.;Kang, H.C.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.72-72
    • /
    • 2011
  • Recently, Zinc oxide (ZnO) nano-structures have been received attractive attention because of their outstanding optical and electrical properties. It might be a promising material considered for applications to photonic and electronic devices such as ultraviolet light emitting diode, thin film transistor, and gas sensors. ZnO nano-structures can be typically synthesized by the VLS growth mode and self-assembly. In the VLS growth mode using various growth techniques, the noble metal catalysts such as Au and Sn were used. However, the growth of ZnO nano-structures on nano-crystalline Au seeds using radio frequency (RF) magnetron sputtering might be explained by the profile coating, i.e. the ZnO nano-structures were a morphological replica of Au seeds. Ga doped ZnO (ZnO:Ga) nano-structures using this concept were synthesized and characterized by XRD, AFM, SEM, and TEM. We found that surface morphology is drastically changed from initial islands to later sun-flower typed nano-structures. We will present the structural evolution of ZnO:Ga nano-structures with increasing the film thickness.

  • PDF

A New Alternative Hole-transporting Layer to PEDOT:PSS for Realizing Highly Efficient All Solution-processable PLEDs

  • Kang, Beom-Goo;Kang, Hong-Kyu;Lee, Kwang-Hee;Lee, Chang-Lyoul;Lee, Jae-Suk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.362-363
    • /
    • 2012
  • A new cross-linkable polymer, cross-linked d-PBAB, which has the triphenylamine as the hole transporting moiety and ethynyl group as the thermal cross-linker is firstly synthesized by the combination of anionic polymerization and deprotection process. The thermal cross-linking reaction was performed at $240^{\circ}C$ for 50 min and cross-linked d-PBAB layer showed smooth surface and is not soluble at organic solvent under spin-coating of emitting layer (EML). The solution-processed PLED which was fabricated with cross-linked d-PBAB as HTL showed approximately two times higher Lmax and four times higher LEmax than those obtained from PLED with PEDOT:PSS as the HTL. These result is ascribed to better ability of cross-linked d-PBAB to block electrons and to prevent exciton-quenching than those of PEDOT : PSS at the EML interface. This results strongly suggested that cross-linked d-PBAB can be a promising material to replace conventional PEDOT : PSS. It can be suspected that PLEDwith cross-linked d-PBAB would show longer lifetime compared with that of PLED with PEDOT : PSS, and thus further studies are under investigation.

  • PDF

PVDF Nanofiber Scaffold Coated with a Vitronectin Peptide Facilitates the Neural Differentiation of Human Embryonic Stem Cells

  • Jeon, Byeong-Min;Yeon, Gyu-Bum;Goo, Hui-Gwan;Lee, Kyung Eun;Kim, Dae-Sung
    • Development and Reproduction
    • /
    • v.24 no.2
    • /
    • pp.135-147
    • /
    • 2020
  • Polyvinylidene fluoride (PVDF) is a stable and biocompatible material that has been broadly used in biomedical applications. Due to its piezoelectric property, the electrospun nanofiber of PVDF has been used to culture electroactive cells, such as osteocytes and cardiomyocytes. Here, taking advantage of the piezoelectric property of PVDF, we have fabricated a PVDF nanofiber scaffolds using an electrospinning technique for differentiating human embryonic stem cells (hESCs) into neural precursors (NPs). Surface coating with a peptide derived from vitronectin enables hESCs to firmly adhere onto the nanofiber scaffolds and differentiate into NPs under dual-SMAD inhibition. Our nanofiber scaffolds supported the differentiation of hESCs into SOX1-positive NPs more significantly than Matrigel. The NPs generated on the nanofiber scaffolds could give rise to neurons, astrocytes, and oligodendrocyte precursors. Furthermore, comparative transcriptome analysis revealed the variable expressions of 27 genes in the nanofiber scaffold groups, several of which are highly related to the biological processes required for neural differentiation. These results suggest that a PVDF nanofiber scaffold coated with a vitronectin peptide can serve as a highly efficient and defined culture platform for the neural differentiation of hESCs.

Stabilization Characteristics of Upgraded Coal Using Palm Oil Residues (팜 잔사유를 이용한 고품위화 석탄의 안정화 특성분석)

  • Park, In Su;Chun, Dong Hyuk;Jo, Wan Taek;You, Ji Ho;Lee, Si Hyun;Rhee, Young Woo
    • Clean Technology
    • /
    • v.19 no.4
    • /
    • pp.469-475
    • /
    • 2013
  • In this research, the stabilization characteristics of upgraded coal using palm oil residues were investigated. The Eco coal, which is the Indonesian low-rank coal, was used as a raw material. The low-rank coal was mixed with palm fatty acid distillate (PFAD), and then dried in a nitrogen atmosphere at $107^{\circ}C$. The trend of spontaneous combustion of upgraded coal was studied by measuring of crossing-point temperature (CPT), low temperature oxidation and moisture readsorption. The results of the CPT measuring and low temperature oxidation showed that the propensity of spontaneous combustion of the upgraded coal was improved compared to the dried coal. The moisture readsorption characteristics of the upgraded coal was also improved. The upgraded coal was stabilized through the surface coating with PFAD, and stability of upgraded coal was proportional to the content of PFAD.

니켈-흑연 복합분말의 니켈코팅층에 미치는 코팅 촉매제의 영향

  • Kim, Dong-Jin;Jeong, Heon-Saeng;Yun, Gi-Byeong
    • Korean Journal of Materials Research
    • /
    • v.3 no.5
    • /
    • pp.521-528
    • /
    • 1993
  • Ni-graphi~e composite powders were prepared by reduct ion of $Ni^{++}$ from arnmoniacal nickel sulfate solution on graphite core by hydrogen gas at elevated temperature and pressure. Effect of coating catalyst. Anthraquinone $(C_6H_4COC_6H_4 CO)$, on the reduction rate and the properties of nickel layer were investigated by SEM, X-ray, size and chemical analysis. 1nduct.ion period, a time lag between the ~njection of hydrogen gas and the start of the reduction, was 22 to 70 mins and was affected by the size and amount of Anthraquinone. Kickel layer deposited on the surface of graphite core material was composed of nickel nodules whose sizes were different with vari~ ous reduction conditions. Minimum diameter of nickel nodules was about 2-3$\mu \textrm m$.

  • PDF

Analysis and Conservation Treatment of Gilt-bronze Standing Buddha and Bronze Standing Buddha Statues Excavated from Yeongguksa Temple in Yeongdong (영동 영국사 출토 금동여래입상, 동제여래입상 분석 및 보존처리)

  • Yoo, Jayoung;Yang, Seulgi;Lee, Minhee
    • Conservation Science in Museum
    • /
    • v.19
    • /
    • pp.69-82
    • /
    • 2018
  • The gilt-bronze standing Buddha and bronze standing Buddha statues excavated from Yeongguksa Temple in Yeongdong, currently held in the collection of the Cheongju National Museum, underwent conservation treatment after scientific study. Materials analysis showed that the gilt-bronze statue was made with a ternary alloy of copper, tin, and lead, while the bronze statue is of a binary alloy of copper and tin. The analysis also revealed that the bronze statue contains gold, and it is therefore recommended to change its description to gilt-bronze standing Buddha. The gilt-bronze statue appears to have been made with lead produced in Korea. The material observed on the surface that is presumed to have been used as an adhesive for the gold coloring is thought to be lacquer. For conservation treatment, the statues were minimally cleaned using physical and chemical methods and were treated through consolidation and protective coating.

Characterization of Polyolefin Separator Support Membranes with Hydrophilic Coatings (폴리올레핀계 다공성 세퍼레이터 지지체 막의 친수 코팅에 따른 특성 평가)

  • Park, Yun Hwan;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.27 no.1
    • /
    • pp.92-103
    • /
    • 2017
  • In this study, electrochemical performance of the hydrophilized separator for the lithium ion battery is studied. The polyolefin based material used as the separator for the lithium ion battery is hydrophobic, and the electrolytic solution using a carbonate-based organic solvent is hydrophilic. Therefore, the polyolefin separator is hydrophilized using various hydrophilic polymers because lithium ion battery uses an aqueous electrolyte solution. In order to evaluate change of the coated separator, the performances of separator in terms of surface morphology, porosity and the wettability are investigated. Finally, the resistance and the ionic conductivity of separator coated with lithium ion are measured to evaluate the performance of lithium ion battery. Separator coated with PMVE shows good hydrophilicity and excellent ionic conductivity because the porosity of the separator is maintained. We can confirm that this property makes potential candidates for lithium ion battery.

Development of Hybrid Metals Coated Carbon Fibers for High-Efficient Electromagnetic Interference Shielding (고효율 전자파 차폐를 위한 이종금속 코팅 탄소섬유 개발)

  • Moon, Jai Joung;Park, Ok-Kyung;Lee, Joong Hee
    • Composites Research
    • /
    • v.33 no.4
    • /
    • pp.191-197
    • /
    • 2020
  • In this study, a hybrid metals such as copper (Cu) and nickel (Ni) coated carbon fibers (Ni-Cu/CFs) was prepared by wet laid method to develop a randomly oriented sheet material for high-efficiency electromagnetic interference shielding with the enhanced durability. The prepared sheet materials show a high electromagnetic interference shielding efficiency of 69.4 to 93.0 dB. In addition, the hybrid metals coated Ni-Cu/CFs sheets showed very high durability with harsh chemical/thermal environments due to the effective corrosive and mechanical resistances of Ni surface. In this context, the Ni-Cu/CF sheet possesses longer service life than the Cu/CF sheet, that is, 1.7 times longer.