• Title/Summary/Keyword: surface chemical treatment

Search Result 1,648, Processing Time 0.026 seconds

Characteristics of Isotherm, Kinetic, and Thermodynamic Parameters for Reactive Blue 4 Dye Adsorption by Activated Carbon (활성탄에 의한 Reactive Blue 4 염료의 흡착에 대한 등온선, 동력학 및 열역학적 특성)

  • Lee, Jong-Jib
    • Clean Technology
    • /
    • v.26 no.2
    • /
    • pp.122-130
    • /
    • 2020
  • The isotherm, kinetic, and thermodynamic parameters of reactive blue 4 adsorbed by activated carbon were investigated for activated carbon dose, pH, initial concentration, contact time, and temperature data. The adsorption of the RB 4 dye by activated carbon showed a concave shape in which the percentage of adsorption increased in both directions starting from pH 7. The isothermal adsorption data were applied to Langmuir, Freundlich, and Temkin isotherms. Both Freundlich and Langmuir isothermal adsorption models fit well. From determined Freundlich separation factor (1/n = 0.125 ~ 0.232) and Langmuir separation factor (RL = 1.53 ~ 1.59), adsorption of RB 4 by activated carbon could be employed as an effective treatment method. The constant related to the adsorption heat (BT = 2.147 ~ 2.562 J mol-1) of Temkin showed that this process was physical adsorption. From kinetic experiments, the adsorption process followed the pseudo second order model with good agreement. The results of the intraparticle diffusion model showed that the inclination of the first straight line representing the surface diffusion was smaller than that of the second straight line representing the intraparticle pore diffusion. Therefore, it was confirmed that intraparticle pore diffusion is the rate-controlling step. The negative Gibbs free energy change (ΔG = -3.262 ~ -7.581 kJ mol-1) and the positive enthalpy change (ΔH = 61.08 kJ mol-1) indicated the spontaneous and endothermic nature of the adsorption process, proving this process to be spontaneous and endothermic.

Phosphatidic Acid Production by PLD Covalently Immobilized on Porous Membrane (공유결합으로 다공성 막에 고정화된 PLD에 의한 포스퍼티딕산 생산)

  • Park, Jin-Won
    • Clean Technology
    • /
    • v.21 no.4
    • /
    • pp.224-228
    • /
    • 2015
  • Phospholipase D (PLD) was immobilized on a submicro-porous membrane through covalent immobilization. The immobilization was conducted on the porous membrane surface with the treatment of polyethyleneimine, glutaraldehyde, and the anhydrase, in sequence. The immobilization was confirmed using X-ray photon spectrometer. The pH values of phosphatidylcholine (PC) dispersion solution with buffer were monitored with respect to time to calculate the catalytic activities of PC for free and immobilized PLD. The catalytic rate constant values for free PLD, immobilized PLD on polystyrene nanoparticles, and immobilized PLD on a porous cellulose acetate membrane were 0.75, 0.64, and 0.52 s-1, respectively. Reusability was studied up to 10 cycles of PC hydrolysis. The activity for the PLD immobilized on the membrane was kept to 95% after 10 cycles, and comparable to the PLD on the nanoparticles. The stabilities for heat and storage were also investigated for the three cases. The results suggested that the PLD immobilized on the membrane had the least loss rate of the activity compared to the others. From these studies, the porous membrane was feasible as a carrier for the PLD immobilization in the production of phosphatidic acid.

A Study on the Manufacturing Technique by Scientific Analysis and Reproduction Experiment of Ancient Silver Objects Excavated from Neungnae-ri, Ganghwa Island (강화도 능내리출토 은제유물의 과학적 분석 및 재현실험을 통한 제작기법 연구)

  • Ryu, Dong-Wan;Kim, Soo-Ki
    • Journal of Conservation Science
    • /
    • v.27 no.1
    • /
    • pp.1-11
    • /
    • 2011
  • For the silver artifacts in the Koryo Dynasty excavated from Neungnae-ri Ganghwa island, the metallographic section analysis and hardness and chemical analysis were conducted. After making samples in the similar ratio of the composition concentration, the changes of the microstructure were checked according to the working method and temperature. The results show that those silver artifacts are Au-Cu alloys with 2 to 6 % of Cu. From the results it is judged that Cu was artificially alloyed with them to keep the proper hardness and identified that they were gilded by the amalgamation process seeing that mercury was included at the guilt layer. Also the porous texture on the surface of them could be formed at over $400^{\circ}C$, therefore, it is assumed the hot working or heat treatment at over $400^{\circ}C$ were performed. In silver artifacts made by the relief and repousse, they have the similar composition analysis to other 7 artifacts but the hardness is lower than pure silver. Consequently from differences in the hardness, it can be inferred that the low hardness of silver artifacts is concerned with manufacturing techniques.

Adsorption Equilibrium, Kinetics and Thermodynamics Studies of Malachite Green Using Zeolite (제올라이트를 이용한 말라카이트 그린의 흡착평형, 동력학 및 열역학 연구)

  • Lee, Jong-Jib
    • Clean Technology
    • /
    • v.18 no.1
    • /
    • pp.76-82
    • /
    • 2012
  • The paper includes utlization of zeolite as potential adsorbent to remove a hazardous malachite green from waste water. The adsorption studies were carried out at 298, 308 and 318 K and effects of temperature, contact time, initial concentration on the adsorption were measured. On the basis of adsorption data Langmuir and Freundlich adsorption isotherm model were also confirmed. The equilibrium process was described well by Freundlich isotherm model, showing a selective adsorption by irregular energy of zeolite surface. From determined isotherm constants, zeolite could be employed as effective treatment for removal of malachite green. From kinetic experiments, the adsorption process followed the pseudo second order model, and the adsorption rate constant ($k_2$) decreased with increasing initial concentration of malachite green. Thermodynamic parameters like activation energy, change of free energy, enthalpy, and entropy were also calculated to predict the nature adsorption. The activation energy calculated from Arrhenius equation indicated that the adsorption of malachite green on the zeolite was physical process. The negative free energy change (${\Delta}G^{\circ}$ =-6.47~-9.07 kJ/mol) and the positive enthalpy change (${\Delta}H^{\circ}$ = +32.414 kJ/mol) indicated the spontaneous and endothermic nature of the adsorption in the temperature range 298~318 K.

Enhanced Properties of Epoxy Molding Compound by Plasma Polymerization Coating of Silica (실리카의 플라즈마 중합 코팅에 의한 에폭시 봉지재의 물성 향상 연구)

  • Roh, J.H.;Lee, J.H.;Yoon, T.H.
    • Journal of Adhesion and Interface
    • /
    • v.2 no.2
    • /
    • pp.1-10
    • /
    • 2001
  • Silica for Epoxy Molding Compound (EMC) was coated via plasma-polymerization with RF plasma (13.56 MHz) as a function of treatment time, power and pressure. 1,3-diaminopropane, allylamine, pyrrole, 1,2-epoxy-5-hexene, allylmercaptan or allylalcohol were utilized for plasma polymerization coating and adhesion of coated silica was evaluated by measuring flexural strength. CTE and water absorption of EMC were also measured, and fracture surface of flexural specimen was analyzed by SEM in order to elucidate the failure mode. The plasma polymer coated silica was analyzed by FT-IR and reactivity of plasma polymer coating with epoxy resin was evaluated with DSC in order to investigate the adhesion mechanism. The EMC prepared from the silica coated with 1,3-diaminopropane or allylamine exhibited high flexural strength, low CTE, and low water absorption compared with the control sample, and also exhibited 100% cohesive failure mode. These results can be attributed to the chemical reaction between the functional groups in the plasma polymer coating and epoxy resin, and also consistent with the results from FT-IR and DSC analysis.

  • PDF

Analysis on the Damage Status by Diagnostical Methodology for the Improvement Landscape on the Supyo-bridge at Chunggae-stream (청계천 수표교(水標橋)의 경관 향상을 위한 진단학적(診斷學的) 훼손상태 분석)

  • An, Jin-Sung;Choi, Ah-Hyun;Kim, Yu-Il
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.28 no.3
    • /
    • pp.105-113
    • /
    • 2010
  • This study is for the preservation plan of the tradition space which is performed by the damage status analysis through performing the value assessment. Especially, it is an experimental study for finding the process and methods by analyzing the major element for the value assessment of the selected object's damage status through the expert group who are systematized in their interest to conserve the traditional structure in traditional space. For that purpose, this study should be performed by the fundamental understanding of the physical property of the Supyo-bridge and the condition of the selected site's environment. Meanwhile, this study has been done that 'map of the damage status distribution' for making records of damage status of the Supyo-bridge on the property utilized field measurement adapted by photogrammetry and assessment guidelines, which are for investigation on damage status of objects that are standardized 'Raccomandazioni Normal' which could be said construction culture assets management guidelines of Italian government. As the result of investigation, damage status of each part in the Supyo-bridge was mostly composed of damage by sediment and corrosion and in case of 9 damage types including corrosion, in consideration of physical and chemical properties and distribution status of those elements, it is made an judgement that is not working as a threatened factor regarding security of the Supyo-bridge. On the contrary, for the improvement landscape, in case of 'Thermoclastism' phenomenon observed in 'upper floor', 'Myungae stone' and 'bridge pier' is that when taking it into consideration that is widely distributed concentrated on the bridge pier, surface reinforcement job along with elimination of damage part will be judged to be requested for earliest treatment.

Neuronal Phenotypes and Gene Expression Profiles of the Human Adipose Tissue-Derived Stromal Cells in the Neuronal Induction (신경 분화 유도한 인체 지방조직 유래 간질세포의 신경 표현형과 유전자 발현)

  • Shim, Su Kyung;Oh, Deuk Young;Jun, Young Joon;Lee, Paik Kwon;Ahn, Sang Tae;Rhie, Jong Won
    • Archives of Plastic Surgery
    • /
    • v.34 no.1
    • /
    • pp.1-7
    • /
    • 2007
  • Purpose: Human adipose tissue-derived stromal cells(hADSCs) can be expanded in vitro and induced to differentiate into multiple mesenchymal cell types. In this study we have examined various neuronal phenotypes and gene expression profiles of the hADSCs in the neuronal induction. Methods: The hADSCs were isolated from human adipose tissue and they were characterized by the flow cytometry analysis using CD13, CD29, CD34, CD45, CD49d, CD90, CD105 and HLA-DR cell surface markers. We differentiated the hADSCs into the neuronal lineage by using chemical induction medium and observed the cells with contrast microscopy. The immunocytochemistry and western blotting were performed using the NSE, NeuN, Trk-A, Vimentin, N-CAM, S-100 and ${\beta}$-Tubulin III antibodies. Results: The hADSCs were positive for CD13($90.3{\pm}4%$), CD29($98.9{\pm}0.7%$), CD49d($13.6{\pm}6%$), CD90 ($99.4{\pm}0.1%$), CD105($96%{\pm}2.8%$) but negative for CD34, CD45 and HLA-DR. The untreated cultures of hADSCs predominately consisted of spindle shaped cells and a few large, flat cells. Three hours after the addition of induction medium, the hADSCs had changed morphology and adopted neuronal-like phenotypes. The result of immunocytochemistry and western blotting showed that NSE, NeuN, Trk-A, Vimentin, N-CAM, S-100 and ${\beta}$-Tubulin III were expressed. However, NSE, NeuN, Vimentin were weakly expressed in the control. Conclusion: Theses results indicate that hADSCs have the capabillity of differentiating into neuronal lineage in a specialized culture medium. hADSCs may be useful in the treatment of a wide variety of neurological disorders.

Analysis of Factors Affecting the Hygroscopic Performance of Thermally Treated Pinus koraiensis Wood (잣나무열처리재의 흡방습성능에 미치는 영향인자 분석)

  • Chang, Yoon-Seong;Han, Yeon-Jung;Eom, Chang-Deuk;Park, Joo-Saeng;Park, Moon-Jae;Choi, In-Gyu;Yeo, Hwan-Myeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.1
    • /
    • pp.10-18
    • /
    • 2012
  • A high airtightness is required for the residential spaces constructed recently to save cooling and heating energy through improving insulation performance. Because the chances to release steam formed by human activity in building and inflow of water vapor in outdoor air to residential space are reduced, the natural humidity control performance of interior materials has become more important. In this study, hygroscopic performance of thermo-physically treated wood (Pinus koraiensis) was estimated. At various relative humidity condition, the water vapor adsorption and desorption rates of wooden materials were measured as well as equilibrium moisture content. Effects of roughness and surface microstructure as physical factors and functional groups as chemical factors on the hygroscopicity were analyzed. It is expected that the results from this study and further study of measuring moisture generation in residential spaces could contribute to install a system for evaluating the hygrothermal performance of wooden building.

Carbothermic Reduction of Zinc Oxide with Iron Oxide (산화아연(酸化亞鉛)의 탄소열환원반응(炭素熱還元反應)에서 산화철(酸化鐵)의 영향(影響))

  • Kim, Byung-Su;Park, Jin-Tae;Kim, Dong-Sik;Yoo, Jae-Min;Lee, Jae-Chun
    • Resources Recycling
    • /
    • v.15 no.4 s.72
    • /
    • pp.44-51
    • /
    • 2006
  • Most electric arc furnace dust (EAFD) treatment processes to recover zinc from EAFD employ carbon as a reducing agent for the zinc oxide in the EAFD. In the present work, the reduction reaction of zinc oxide with carbon in the present of iron oxide was kinetically studied. The experiments were carried out at temperatures between 1173 K and 1373 K under nitrogen atmosphere using a weight-loss technique. From the experimental results, it was concluded that adding the proper amount of iron oxide to the reactant accelerates the reaction rate of zinc oxide with carbon. This is because iron oxide in the reduction reaction of zinc oxide with carbon promotes the carbon gasification reaction. The spherical shrinking core model for a surface chemical reaction control was found to be useful in describing kinetics of the reaction over the entire temperature range. The reaction has an activation energy of 53 kcal/mol (224 kJ/mol) for ZnO-C reaction system, an activation energy of 42 kcal/mol (175 kJ/mol) for $ZnO-Fe_{2}O_{3}-C$ reaction system, and an activation energy of 44 kcal/mol (184 kJ/mol) for ZnO-mill scale-C reaction system.

Fates of water and salts in non-aqueous solvents for directional solvent extraction desalination: Effects of chemical structures of the solvents

  • Choi, Ohkyung;Kim, Minsup;Cho, Art E.;Choi, Young Chul;Kim, Gyu Dong;Kim, Dooil;Lee, Jae Woo
    • Membrane and Water Treatment
    • /
    • v.10 no.3
    • /
    • pp.207-212
    • /
    • 2019
  • Non-aqueous solvents (NASs) are generally known to be barely miscible, and reactive with polar compounds, such as water. However, water can interact with some NASs, which can be used as a new means for water recovery from saline water. This study explored the fate of water and salt in NAS, when saline water is mixed with NAS. Three amine solvents were selected as NAS. They had the same molecular formula, but were differentiated by their molecular structures, as follows: 1) NAS 'A' having the hydrophilic group ($NH_2$) at the end of the straight carbon chain, 2) NAS 'B' with symmetrical structure and having the hydrophilic group (NH) at the middle of the straight carbon chain, 3) NAS 'C' having the hydrophilic group ($NH_2$) at the end of the straight carbon chain but possessing a hydrophobic ethyl branch in the middle of the structure. In batch experiments, 0.5 M NaCl water was blended with NASs, and then water and salt content in the NAS were individually measured. Water absorption efficiencies by NAS 'B' and 'C' were 3.8 and 10.7%, respectively. However, salt rejection efficiency was 98.9% and 58.2%, respectively. NAS 'A' exhibited a higher water absorption efficiency of 35.6%, despite a worse salt rejection efficiency of 24.7%. Molecular dynamic (MD) simulation showed the different interactions of water and salts with each NAS. NAS 'A' formed lattice structured clusters, with the hydrophilic group located outside, and captured a large numbers of water molecules, together with salt ions, inside the cluster pockets. NAS 'B' formed a planar-shaped cluster, where only some water molecules, but no salt ions, migrated to the NAS cluster. NAS 'C', with an ethyl group branch, formed a cluster shaped similarly to that of 'B'; however, the boundary surface of the cluster looked higher than that of 'C', due to the branch structure in solvent. The MD simulation was helpful for understanding the experimental results for water absorption and salt rejection, by demonstrating the various interactions between water molecules and the salts, with the different NAS types.