• Title/Summary/Keyword: surface charge density

Search Result 295, Processing Time 0.03 seconds

Investigation of the Scanning Tunneling Microscopy Image, the Stacking Pattern and the Bias-voltage Dependent Structural Instability of 2,2'-Bipyridine Molecules Adsorbed on Au(111) in Terms of Electronic Structure Calculations

  • Suh, Young-Sun;Park, Sung-Soo;Kang, Jin-Hee;Hwang, Yong-Gyoo;Jung, D.;Kim, Dong-Hee;Lee, Kee-Hag;Whangbo, M.-H.
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.2
    • /
    • pp.438-444
    • /
    • 2008
  • A self-assembled monolayer of 2,2'-bipyridine (22BPY) molecules on Au(111) underwent a structural phase transition when the polarity of a bias voltage was switched in scanning tunneling microscopy (STM) experiments. The nature of two bright spots representing each 22BPY molecule on Au(111) in the high-resolution STM images was identified by calculating the partial density plots for a monolayer of 22BPY molecules adsorbed on Au(111) using tight-binding electronic structure calculations. The stacking pattern of the chains of 22BPY molecules on Au(111) was explained by examining the intermolecular interactions between the 22BPY molecules based on first principles electronic structure calculations for a 22BPY dimer, (22BPY)2. The structural instability of the 22BPY molecule arrangement caused by a change in the bias voltage switch was investigated by estimating the adsorbate-surface interaction energy using a point-charge approximation for Au(111).

Concentration of Sodium Chloride, Sodium Acetate and Sodium Citrate Solutions by using Polyamide Reverse Osmosis Membrane (폴리아미드 역삼투막을 이용한 염화나트륨, 아세트산나트륨, 구연산나트륨 용액의 농축)

  • Lee, Heungil;Kim, In Ho
    • Korean Chemical Engineering Research
    • /
    • v.56 no.5
    • /
    • pp.679-686
    • /
    • 2018
  • Reverse osmosis (RO) concentration of sodium chloride, sodium acetate, and sodium citrate solutions has been performed by polyamide RO membrane. Concentration polarization phenomena was also studied by changing pressure, solute kinds, and initial solution concentration. Pressure effect on permeation flux was that the increase of flux was accompanied by the increase of pressure. Flux increase was observed by the decrease of initial solution concentration. Surface concentration on the RO membrane increases and so flux declines due to the concentration polarization. In the later phase of concentration, concentration polarization effect was decreased by the back diffusion of solute from the polariztion layer. In case of sodium citrate, its large ion size and charge density resulted in the discrepancy between theory and experimental data of concentration polarization. It may be due to electric repulsion on the membrane surface.

A Study on the Structure and Electrical Properties of CeO$_2$ Thin Film (CeO$_2$ 박막의 구조적, 전기적 특성 연구)

  • 최석원;김성훈;김성훈;이준신
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.469-472
    • /
    • 1999
  • CeO$_2$ thin films have used in wide applications such as SOI, buffer layer, antirflection coating, and gate dielectric layer. CeO$_2$takes one of the cubic system of fluorite structure and shows similar lattice constant (a=0.541nm) to silicon (a=0.543nm). We investigated CeO$_2$films as buffer layer material for nonvolatile memory device application of a single transistor. Aiming at the single transistor FRAM device with a gate region configuration of PZT/CeO$_2$ /P-Si , this paper focused on CeO$_2$-Si interface properties. CeO$_2$ films were grown on P-type Si(100) substrates by 13.56MHz RF magnetron sputtering system using a 2 inch Ce metal target. To characterize the CeO$_2$ films, we employed an XRD, AFM, C-V, and I-V for structural, surface morphological, and electrical property investigations, respectively. This paper demonstrates the best lattice mismatch as low as 0.2 % and average surface roughness down to 6.8 $\AA$. MIS structure of CeO$_2$ shows that breakdown electric field of 1.2 MV/cm, dielectric constant around 13.6 at growth temperature of 200 $^{\circ}C$, and interface state densities as low as 1.84$\times$10$^{11}$ cm $^{-1}$ eV$^{-1}$ . We probes the material properties of CeO$_2$ films for a buffer layer of FRAM applications.

  • PDF

A Preponderant Enhancement of Conversion Efficiency by Surface Coating of $SnO_2$ Nanoparticles in Organic MK-2 Dye Sensitized Solar Cell

  • Son, Dae-Yong;Lee, Chang-Ryul;Park, Nam-Gyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.218-218
    • /
    • 2012
  • Nanocrystalline $SnO_2$ colloids are synthesized by hydrolysis of $SnCl_4{\cdot}5H_2O$ in aqueous ammonia solution. The synthesized $SnO_2$ nanoparticles with ca. 15 nm in diameter are coated on a fluorinedoped thin oxide (FTO) conductive substrate and heated at $550^{\circ}C$. The annealed $SnO_2$ film is treated with aqueous $TiCl_4$ solution, which is sensitzied with MK-2 dye (2-cyano-3-[5'''-(9-ethyl- 9H-carbazol-3-yl)-3',3'',3''',4-tetra-n-hexyl-[2,2',5',2'',5'',2''']-quater thiophen-5-yl]). Compared to bare $SnO_2$ film, the conversion efficiency is significantly improved from 0.22% to 3.13% after surface treatment of $SnO_2$ with $TiCl_4$, which is mainly due to the large increases in both photocurrent density from 1.33 to $9.46mA/cm^2$ and voltage from 315 to 634 mV. It is noted that little change in the amount of the adsorbed dye is detected from 1.21 for the bare $SnO_2$ to $1.28{\mu}mol/cm^2$ for the $TiCl_{4-}$ treated $SnO_2$. This indicates that the photocurrent density increased by more than 6 times is not closely related to the dye loading concentration. From the photocurrent and voltage transient spectroscopic studies, electron life time increases by about 13 order of magnitude, whereas electron diffusion coefficient decreases by about 3.6 times after $TiCl_4$ treatment. Slow electron diffusion rate offers sufficient time for regeneration kinetics. As a result, charge collection efficiency of about 40% before $TiCl_4$ treatment is improved to 95% after $TiCl_4$ treatment. The large increase in voltage is due to the significant increase in electron life time, associated with upward shift of fermi energy.

  • PDF

The Fabrication of Poly-Si Solar Cells for Low Cost Power Utillity (저가 지상전력을 위한 다결정 실리콘 태양전지 제작)

  • Kim, S.S.;Lim, D.G.;Shim, K.S.;Lee, J.H.;Kim, H.W.;Yi, J.
    • Solar Energy
    • /
    • v.17 no.4
    • /
    • pp.3-11
    • /
    • 1997
  • Because grain boundaries in polycrystalline silicon act as potential barriers and recombination centers for the photo-generated charge carriers, these defects degrade conversion effiency of solar cell. To reduce these effects of grain boundaries, we investigated various influencing factors such as thermal treatment, various grid pattern, selective wet etching for grain boundaries, buried contact metallization along grain boundaries, grid on metallic thin film. Pretreatment above $900^{\circ}C$ in $N_2$ atmosphere, gettering by $POCl_3$ and Al treatment for back surface field contributed to obtain a high quality poly-Si. To prevent carrier losses at the grain boundaries, we carried out surface treatment using Schimmel etchant. This etchant delineated grain boundaries of $10{\mu}m$ depth as well as surface texturing effect. A metal AI diffusion into grain boundaries on rear side reduced back surface recombination effects at grain boundaries. A combination of fine grid with finger spacing of 0.4mm and buried electrode along grain boundaries improved short circuit current density of solar cell. A ultra-thin Chromium layer of 20nm with transmittance of 80% reduced series resistance. This paper focused on the grain boundary effect for terrestrial applications of solar cells with low cost, large area, and high efficiency.

  • PDF

Effect of O2 Plasma Treatment on Electrochemical Performance of Supercapacitors Fabricated with Polymer Electrolyte Membrane (고분자 전해질막으로 제조한 슈퍼커패시터의 전기화학적 특성에 대한 산소 플라즈마 처리 영향)

  • Moon, Seung Jae;Kim, Young Jun;Kang, Du Ru;Lee, So Youn;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.32 no.1
    • /
    • pp.43-49
    • /
    • 2022
  • Solid-state supercapacitors with high safety and robust mechanical properties are attracting global attention as next-generation energy storage devices. As an electrode of a supercapacitor, an economical carbon-based electrode is widely used. However, when an aqueous electrolyte is introduced, the charge transfer resistance increases because the interfacial contact between the hydrophobic electrode surface and aqueous electrolyte is not good. In this regard, we propose a method to obtain higher electrochemical performance based on improved interfacial properties by treating the electrode surface with oxygen plasma. The surface hydrophilization induced by the enriched oxygen functionalities was confirmed by the contact angle measurement. As a result, the degree of hydrophilization was easily adjusted by controlling the power and duration of the oxygen plasma treatment. As the electrolyte of the supercapacitor, PVA/H3PO4, which is a typical solid-state aqueous electrolyte, was used. Free-standing membranes of PVA/H3PO4 electrolyte were prepared and then pressed onto the electrode. The optimal condition was to perform oxygen plasma treatment for 5 seconds with a low power of 15 W, and the energy density of the supercapacitor increased by about 8%.

Surface Properties of the Dried Coacervate Film Affect Dry Feel of the Shampoo Composed of Cationic Polymer and Anionic/Amphoteric Surfactant (양이온 폴리머와 음이온/양쪽성 계면활성제로 형성된 코아세르베이트 건조 필름 특성이 샴푸 건조 후 사용감에 미치는 영향)

  • Son, Seong-Kil;Jeon, Hyun-Wook;Lee, In-Ho;Chang, Sug-Youn
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.38 no.2
    • /
    • pp.133-138
    • /
    • 2012
  • The purpose of this study was to examine the correlation between physical properties of dried coacervate films and dry feel for shampoo composition. Simple shampoo compositions were made of two different cationic charge density polymers in the same surfactant compositions. The simple shampoo compositions were diluted with distilled water to make coacervate. Formed coacervate was collected by centrifuge (3,000 rpm, 30 min). Coacervate was coated on the glass plates and dried in drying oven (for 1 h, $50^{\circ}C$) to make the thin film. We carried out an experiment on measurement of contact angle, moisture loss ratio and SEM image analysis of the dried coacervate film. Dry feelings of the shampoos were evaluated by panel using hair tresses. Results show that the properties of dried coacervate films affect the dry feel of the after shampooing.

Corrosion Behavior of High Pressure Die Cast Al-Ni and Al-Ni-Ca Alloys in 3.5% NaCl Solution

  • Arthanari, Srinivasan;Jang, Jae Cheol;Shin, Kwang Seon
    • Corrosion Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.100-108
    • /
    • 2017
  • In this investigation corrosion behavior of newly developed high-pressure die cast Al-Ni (N15) and Al-Ni-Ca (NX1503) alloys was studied in 3.5% NaCl solution. The electrochemical corrosion behavior was evaluated using open circuit potential (OCP) measurement, potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS) techniques. Potentiodynamic polarization results validated that NX1503 alloy exhibited lower corrosion current density ($i_{corr}$) value ($5.969{\mu}A/cm^2$) compared to N15 ($7.387{\mu}A/cm^2$). EIS-Bode plots revealed a higher impedance (${\mid}Z{\mid}$) value and maximum phase angle value for NX1503 than N15 alloy. Equivalent circuit curve fitting analysis revealed that surface layer ($R_1$) and charge transfer resistance ($R_{ct}$) values of NX1503 alloy was higher compared to N15 alloy. Immersion corrosion studies were also conducted for alloys using fishing line specimen arrangement to simultaneously measure corrosion rates from weight loss ($P_W$) and hydrogen volume ($P_H$) after 72 hours and NX1503 alloy had lower corrosion rate compared to N15 alloy. The addition of Ca to N15 alloy significantly reduced the Al3Ni intermetallic phase and further grain refinement may be attributed for reduction in the corrosion rate.

Arc Discharge Sensor having Noise Immunity to Ambient Light (주변광 영향을 받지 않는 아크방전 감지 센서)

  • Roh, Hee Hyuk;Seo, Yong Ma;Khishigsuren, J.;Choi, Kyoo Nam
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.726-728
    • /
    • 2013
  • Optoelectronic arc discharge sensor was used to detect arc discharge inside power distribution panel. Arc discharge is fatal to power system once it begins, thus preventive detection is necessary before power failure occurs. Optoelectronic detection method was used to avoid direct electrical contact to power apparatus inside power distribution panel. 180 degree detection angle and detection range far exceeding 6m, which was sufficient for monitoring purpose, was achieved using the photodiode having $7.5mm^2$ of active surface area and flash source with $0.4cal/cm^2$ energy density, which is equivalent to 1.9J with $2.16cm^2$ emitting area. The response speed of arc discharge sensor was measured to be below 1 msec. The above optoelectronic arc discharge sensor was measured to be sensitive enough to detect 0.94 pC charge.

  • PDF

Performance Improvement of All Solution Processable Organic Thin Film Transistors by Newly Approached High Vacuum Seasoning

  • Kim, Dong-Woo;Kim, Hyoung-Jin;Lee, Young-Uk;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.470-470
    • /
    • 2012
  • Organic thin film transistors (OTFTs) backplane constitute the active elements in new generations of plastic electronic devices for flexible display. The overall OTFTs performance is largely depended on the properties and quality of each layers of device material. In solution based process of organic semiconductors (OSCs), the interface state is most impediments to preferable performance. Generally, a threshold voltage (Vth) shift is usually exhibited when organic gate insulators (OGIs) are exposed in an ambient air condition. This phenomenon was caused by the absorbed polar components (i.e. oxygen and moisture) on the interface between OGIs and Soluble OSCs during the jetting process. For eliminating the polar component at the interface of OGI, the role of high vacuum seasoning on an OGI for all solution processable OTFTs were studied. Poly 4-vinly phenols (PVPs) were the material chosen as the organic gate dielectric, with a weakness in ambient air. The high vacuum seasoning of PVP's surface showed improved performance from non-seasoning TFT; a $V_{th}$, a ${\mu}_{fe}$ and a interface charge trap density from -8V, $0.018cm^2V^{-1}s^{-1}$, $1.12{\times}10^{-12}(cm^2eV)^{-1}$ to -4.02 V, $0.021cm^2V^{-1}s^{-1}$, $6.62{\times}10^{-11}(cm^2eV)^{-1}$. These results of OTFT device show that polar components were well eliminated by the high vacuum seasoning processes.

  • PDF