• Title/Summary/Keyword: surface broadband albedo

Search Result 4, Processing Time 0.015 seconds

Landsat 8-based High Resolution Surface Broadband Albedo Retrieval (Landsat 8 위성 기반 고해상도 지표면 광대역 알베도 산출)

  • Lee, Darae;Seo, Minji;Lee, Kyeong-sang;Choi, Sungwon;sung, Noh-hun;Kim, Honghee;Jin, Donghyun;Kwon, Chaeyoung;Huh, Morang;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.6
    • /
    • pp.741-746
    • /
    • 2016
  • Albedo is one of the climate variables that modulate absorption of solar energy, and its retrieval is important process for climate change study. High spatial resolution and long-term consistent periods are important considerations in order to efficiently use the retrieved albedo data. This study retrieved surface broadband albedo based on Landsat 8 as high resolution which is consistent with Landsat 7. First of all, we analyzed consistency of Landsat 7 channel and Landsat 8 channel. As a result, correlation coefficient(R) on all channels is average 0.96. Based on this analysis, we used multiple linear regression model using Landsat 7 albedo, which is being used in many studies, and Landsat 8 reflectance channel data. The regression coefficients of each channel calculated by regression analysis were used to derive a formula for converting the Landsat 8 reflectance channel data to broadband albedo. After Landsat 8 albedo calculated using the derived formula is compared with Landsat 7 albedo data, we confirmed consistency of two satellite using Root Mean Square Error (RMSE), R-square ($R^2$) and bias. As a result, $R^2$ is 0.89 and RMSE is 0.003 between Landsat 7 albedo and Landsat 8 albedo.

Comparative Analysis of Algorithm for Calculation of Absorbed Shortwave Radiation at Surface Using Satellite Date (위성 자료를 이용한 지표면 흡수단파복사 산출 알고리즘들의 비교 분석)

  • Park, Hye-In;Lee, Kyu-Tae;Zo, Il-Sung;Kim, Bu-Yo
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.925-939
    • /
    • 2018
  • Absorbed shortwave radiation at the surface is an important component of energy analysis among the atmosphere, land, and ocean. In this study, the absorbed shortwave radiation was calculated using a radiation model and surface broadband albedo data for application to Geostationary Earth Orbit Korea Multi-Purpose SATellite (GEO-KOMPSAT-2A; GK-2A). And the results (GWNU algorithm) were compared with CERES data and calculation results using pyranometer and MODIS (Moderate Resolution Imaging Spectroradiometer) data to be selected as the reference absorbed shortwave radiation. This GWNU algorithm was also compared with the physical and statistical algorithms of GOSE-R ABI and two algorithms (Li et al., 1993; Kim and Jeong, 2016) using regression equation. As a result, the absorbed shortwave radiation calculated by GWNU algorithm was more accurate than the values calculated by the other algorithms. However, if the problem about computing time and accuracy of albedo data arise when absorbed shortwave radiation is calculated by GWNU algorithm, then the empirical algorithms explained above should be used with GWNU algorithm.

DEEP-South: Round-the-clock Census of Small bodies in the Southern Sky

  • Moon, Hong-Kyu;Kim, Myung-Jin;Yim, Hong-Suh;Choi, Young-Jun;Bae, Young-Ho;Roh, Dong-Goo;Ishiguro, Masateru;Mainzer, Amy;Bauer, James;Byun, Yong-Ik;Larson, Steve;Alcock, Charles
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.56.3-57
    • /
    • 2015
  • As of early 2015, more than 12,000 Near-Earth Objects (NEOs) have been catalogued by the Minor Planet Center, however their observational properties such as broadband colors and rotational periods are known only for a small fraction of the population. Thanks to time series observations with the KMTNet, orbits, optical sizes (and albedo), spin states and three dimensional shapes of asteroids and comets including NEOs will be systematically investigated and archived for the first time. Based on SDSS and BVRI colors, their approximate surface mineralogy will also be characterized. This so-called DEEP-South (Deep Ecliptic Patrol of the Southern Sky) project will provide a prompt solution to the demand from the scientific community to bridge the gaps in global sky coverage with a coordinated use of the network of ground-based telescopes in the southern hemisphere. We will soon finish implementing dedicated software subsystem consisted of automated observation scheduler and data pipeline for the sake of increased discovery rate, rapid follow-up, timely phase coverage, and efficient data analysis. We will give a brief introduction to test runs conducted at CTIO with the first KMTNet telescope in February and March 2015 and experimental data processing. Preliminary scientific results will also be presented.

  • PDF

Study on the LOWTRAN7 Simulation of the Atmospheric Radiative Transfer Using CAGEX Data. (CAGEX 관측자료를 이용한 LOWTRAN7의 대기 복사전달 모의에 대한 조사)

  • 장광미;권태영;박경윤
    • Korean Journal of Remote Sensing
    • /
    • v.13 no.2
    • /
    • pp.99-120
    • /
    • 1997
  • Solar radiation is scattered and absorbed atmospheric compositions in the atmosphere before it reaches the surface and, then after reflected at the surface, until it reaches the satellite sensor. Therefore, consideration of the radiative transfer through the atmosphere is essential for the quantitave analysis of the satellite sensed data, specially at shortwave region. This study examined a feasibility of using radiative transfer code for estimating the atmospheric effects on satellite remote sensing data. To do this, the flux simulated by LOWTRAN7 is compared with CAGEX data in shortwave region. The CAGEX (CERES/ARM/GEWEX Experiment) data provides a dataset of (1) atmospheric soundings, aerosol optical depth and albedo, (2) ARM(Aerosol Radiation Measurement) radiation flux measured by pyrgeometers, pyrheliometer and shadow pyranometer and (3) broadband shortwave flux simulated by Fu-Liou's radiative transfer code. To simulate aerosol effect using the radiative transfer model, the aerosol optical characteristics were extracted from observed aerosol column optical depth, Spinhirne's experimental vertical distribution of scattering coefficient and D'Almeida's statistical atmospheric aerosols radiative characteristics. Simulation of LOWTRAN7 are performed on 31 sample of completely clear days. LOWTRAN's result and CAGEX data are compared on upward, downward direct, downward diffuse solar flux at the surface and upward solar flux at the top of the atmosphere(TOA). The standard errors in LOWTRAN7 simulation of the above components are within 5% except for the downward diffuse solar flux at the surface(6.9%). The results show that a large part of error in LOWTRAN7 flux simulation appeared in the diffuse component due to scattering mainly by atmispheric aerosol. For improving the accuracy of radiative transfer simulation by model, there is a need to provide better information about the radiative charateristrics of atmospheric aerosols.