• Title/Summary/Keyword: surface and interface

Search Result 2,782, Processing Time 0.028 seconds

Study for Frictional Characteristics of graphite lubricants in hot. warm forging (열ㆍ온간 단조에서 그라파이트 윤활제의 마찰 특성에 대한 연구)

  • ;;T.A. Dean
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.4
    • /
    • pp.29-37
    • /
    • 2000
  • At present there are many theories as to how various lubricants used in forging perform the role of reducing friction. Little work has been carried out to determine the validity of these theories for solid lubricants. This paper covers the development and preliminary results of the experiments devised to illustrate the movement of graphite at the workpiece/tool interface in the work forging temperature range. The paper describes the results obtained from upsetting of rings between two flat dies for measurement of lubricant thickness and compaction of graphite for density-pressure relationship. These allowed the lubricant to be exposed to forging conditions and by applying the principles of Male's ring test the simple generation of a value fur friction factor could also be determined. The experiments have been undertaken to examine the behavior of lubricant for shot blasted surface and change of surface roughness. A simple computer model of the interface has been constructed characterizing the graphite layer in an attempt to simulate the boundary mechanics.

  • PDF

Comparative Investigation into the Effect of Surface Modification of Metal with Acid-treatments in Public Standards (금속표면의 개질 효과 분석을 위한 산처리 방법의 공인규격 간 비교연구)

  • Kim, Jong-Hak;Joo, Hyeok-Jong;Song, Si-Yong;Choi, Kil Yeong;Byun, Doo-Jin
    • Journal of Adhesion and Interface
    • /
    • v.5 no.3
    • /
    • pp.1-9
    • /
    • 2004
  • Using the methods which described in ISO 4588, ASTM D2651 and the selected literature, we investigated the best conditions of acid treatment for stainless steel and carbon steel. The acid treatments were conducted with four different acid solutions which were prepared for stainless steel and carbon steel specimen. We observed the contact angle and morphology and roughness of the metal surface and the thickness change at various treatment conditions as treatment temperature and time. Also, we investigated the characteristics of the surface aging according to air exposure after surface treatment. As a result, the optimal temperature of the acid treatment for stainless steel and carbon steel were each obtained at $83^{\circ}C$ and $63^{\circ}C$. Also, it was confirmed that the acid treatments for the metal surface were accompanied with the decrease of thickness and the change of surface morphology due to significant erosion that depend on treatment methods. And also, it was characterized that the aspect of surface aging by air exposure was highly depended on the method of acid treatment.

  • PDF

Understanding the Mechanism of Solid Electrolyte Interface Formation Mediated by Vinylene Carbonate on Lithium-Ion Battery Anodes (리튬 이온 배터리 음극에서 비닐렌 카보네이트가 매개하는 고체 전해질 계면 형성 메커니즘 연구)

  • Jinhee Lee;Ji-Yoon Jeong;Jaeyun Ha;Yong-Tae Kim;Jinsub Choi
    • Journal of the Korean institute of surface engineering
    • /
    • v.57 no.2
    • /
    • pp.115-124
    • /
    • 2024
  • In advancing Li-ion battery (LIB) technology, the solid electrolyte interface (SEI) layer is critical for enhancing battery longevity and performance. Formed during the charging process, the SEI layer is essential for controlling ion transport and maintaining electrode stability. This research provides a detailed analysis of how vinylene carbonate (VC) influences SEI layer formation. The integration of VC into the electrolyte markedly improved SEI properties. Moreover, correlation analysis revealed a connection between electrolyte decomposition and battery degradation, linked to the EMC esterification and dicarboxylate formation processes. VC facilitated the formation of a more uniform and chemically stable SEI layer enriched with poly(VC), thereby enhancing mechanical resilience and electrochemical stability. These findings deepen our understanding of the role of electrolyte additives in SEI formation, offering a promising strategy to improve the efficiency and lifespan of LIBs.

Interface State Control of Amorphous InGaZnO Thin Film Transistor by Surface Treatment of Gate Insulator (게이트 절연막의 표면처리에 의한 비정질 인듐갈륨징크옥사이드 박막트랜지스터의 계면 상태 조절)

  • Kim, Bo-Sul;Kim, Do-Hyung;Lee, Sang-Yeol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.9
    • /
    • pp.693-696
    • /
    • 2011
  • Recently, amorphous oxide semiconductors (AOSs) based thin-film transistors (TFTs) have received considerable attention for application in the next generation displays industry. The research trends of AOSs based TFTs investigation have focused on the high device performance. The electrical properties of the TFTs are influenced by trap density. In particular, the threshold voltage ($V_{th}$) and subthreshold swing (SS) essentially depend on the semiconductor/gate-insulator interface trap. In this article, we investigated the effects of Ar plasma-treated $SiO_2$ insulator on the interfacial property and the device performances of amorphous indium gallium zinc oxide (a-IGZO) TFTs. We report on the improvement in interfacial characteristics between a-IGZO channel layer and gate insulator depending on Ar power in plasma process, since the change of treatment power could result in different plasma damage on the interface.

Nonlinear Analysis of Steel-concrete Composite Girder Using Interface Element (경계면 요소를 사용한 강·콘크리트 혼합 거더의 비선형 거동 해석)

  • Kwon, Hee-Jung;Kim, Moon Kyum;Cho, Kyung Hwan;Won, Jong Hwa
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4A
    • /
    • pp.281-290
    • /
    • 2009
  • In this study, an analysis technique of hybrid girder considering nonlinearity of steel-concrete contact surface is presented. Steel-concrete hybrid girder shows partial-interaction behavior due to the deformation of shear connectors, slip and detachment at the interface, and cracks under the applied loads. Therefore, the partial-interaction approach becomes more reasonable. Contact surface is modeled by interface element and analyzed nonlinearly because of cost of time and effort to detailed model and analysis. Steel and Concrete are modeled considering non-linearity of materials. Material property of contact surface is obtained from push-out test and input to interface element. For the constitutive models, Drucker-Prager and smeared cracking model are used for concrete in compression and tension, respectively, and a von-Mises model is used for steel. This analysis technique is verified by comparing it with test results. Using verified analysis technique, various analyses are performed with different parameters such as nonlinear material property of interface element and prestress. The results are compared with linear analysis result and analysis result with the assumption of full-interaction.

A Study of Interface Heat Transfer Coefficient Between Die and Workpiece for Hot Forging (열간단조시 금형과 소재간 계면열전달계수에 관한 연구)

  • Kwon J. W.;Lee J. H.;Lee Y. S.;Kwon Y. N.;Bae W. B.
    • Transactions of Materials Processing
    • /
    • v.14 no.5 s.77
    • /
    • pp.460-465
    • /
    • 2005
  • The temperature difference between die and workpiece has been frequently caused to various surface defects. The distribution and change for the temperature of forged part should be analyzed to prevent the generation of various defects related with the temperature. The surface temperature changes were affected with the interface heat transfer coefficient. Therefore, the coefficient is necessary to predict the temperature changes of die and workpiece. In this study, the experimental and FE analysis were performed to evaluate the coefficient with a function of pressure, temperature, material, and etc. The closed die upsetting was used to measure the coefficient on pressure over the flow stress. AISI1045, A16061, and Cu-OFHC were used to analyze the effect of material. The coefficient was increased with step-up of pressure between die and workpiece. And, A16061 was larger than that of the AISI1045 and Cu-OFHC up to the five times.

A study of interface heat transfer coefficient between die and workpiece for hot forging (열간단조시 금형과 소재간 계면열전달계수에 관한 연구)

  • Kwon J.W.;Lee Y.S.;Kwon Y.N.;Lee J.H.;Bae W.B.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.122-126
    • /
    • 2004
  • The temperature difference between die and workpiece has been frequently caused to various surface defects. The distribution and change fur the temperature of forged part should be analyzed to prevent the generation of various defects related with the temperature. The surface temperature changes were affected with the interface heat transfer coefficient. Therefore, the coefficient is necessary to predict the temperature changes of die and workpiece. In this study, the experimental and FE analysis were performed to evaluate the coefficient with a function of pressure, temperature, material, and etc. The sealed die upsetting was used to measure the coefficient on pressure over the flow stress. AISI1045, Al6XXX, and Pure-Cupper were used to analyze effects according to the material. The coefficient was increased with step-up of pressure between die and workpiece. And, Al6XXX was larger than the AISI1045 and Pure-Cupper up to the five times.

  • PDF

Development of Numerical Control System for Plate forming Automation (강판의 곡가공 자동화를 위한 수치제어 시스템의 개발)

  • 이주성
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.1
    • /
    • pp.72-79
    • /
    • 2003
  • This paper deals with the development of an interface program for automatic plate forming, which can exchange information between the heating line information generation program and the automatic heating apparatus. In this paper, the performance of the developed interface program has been verified from the view point of numerical position control. By applying the interface program to the operation of the automatic heating apparatus, an experiment of line heating has been conducted for several steel plate models. Based on the experimental results, a simplified relation to estimate angular distortion has keen derived as a natural characteristic of the present automatic heating apparatus. As a result of the present study, the prototype of the automatic plate forming system has been constructed, and its application to the real surface models found in the ship will be presented in the near future.

The Effect of Nonionic Interface Activation Substances in Reduction Phenomenon of Streaming electrification (유동대전 감소현상에 미치는 비이온성 계면활성제의 효과)

  • Kim, Y.W.;Chung, K.H.;Yoo, K.M.;Yoo, J.H.;Lee, E.H.;Lee, D.C.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1410-1412
    • /
    • 1998
  • The purpose of this study is to find the way to prevent the electrostatics from the interface of liquid and solid by adding interface active substances to the insulating oil with concentration. As results, The streaming current, surface tension, and viscosity decreased and conductivity increased at the higher point than the c.m.c. which resulted from, the adding of the interface active substances.

  • PDF