• Title/Summary/Keyword: surface and interface

Search Result 2,778, Processing Time 0.027 seconds

Three-Dimensional Numerical Simulations of Open-Channel Flows with Alternate Vegetated Zones (교행식생 영역을 갖는 개수로 흐름에서의 3차원 수치모의)

  • Kang, Hyeongsik;Kim, Kyu-Ho;Im, Dongkyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3B
    • /
    • pp.247-257
    • /
    • 2009
  • In the present paper, turbulent open-channel flows with alternate vegetated zones are numerically simulated using threedimensional model. The Reynolds-averaged Navier-Stokes Equations are solved with the ${\kappa}-{\varepsilon}$ model. The CFD code developed by Olsen(2004) is used for the present study. For model validation, the partly vegetated channel flows are simulated, and the computed depth-averaged mean velocity and Reynolds stress are compared with measured data in the literature. Comparisons reveal that the present model successfully predicts the mean flow and turbulent structures in vegetated open-channel. However, it is found that the ${\kappa}-{\varepsilon}$ model cannot accurately predict the momentum transfer at the interface between the vegetated zone and the non-vegetated zone. It is because the ${\kappa}-{\varepsilon}$ model is the isotropic turbulence model. Next, the open channel flows with alternate vegetated zones are simulated. The computed mean velocities are compared well with the previously reported measured data. Good agreement between the simulated results and the experimental data was found. Also, the turbulent flows are computed for different densities of vegetation. It is found that the vegetation curves the flow and the meandering flow pattern becomes more obvious with increasing vegetation density. When the vegetation density is 9.97%, the recirculation flows occur at the locations opposite to the vegetation zones. The impacts of vegetation on the flow velocity and the water surface elevation are also investigated.

Slope Stability Analysis by Slice Method and Finite Difference Method- A Comparative Study - (절편법과 유한차분법에 의한 사면안정해석 비교연구)

  • 박연준;채영수;유광호;백영식
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.6
    • /
    • pp.263-272
    • /
    • 1999
  • Slice method is commonly used in solving slope stability problems since it is easy to use and its computation time is rather short. But depending upon the assumptions on the inter-slice forces, different methods are available. Quite often the difference between methods are so big that it is very difficult to make engineering decisions. This paper describes a method to calculate the factor of safety of a slope using FLAC, a finite difference based program. A FISH routine is developed to calculate the factor of safety, and verified by comparing with Chen's limit equilibrium solution. An example problem was selected from Fredlund and Krhan's paper, and results were compared for different soil and water conditions. The difference was less than 0.01 when the soil is homogeneous, and less than 5 % when a weak layer is embedded. Since most geotechnical application programs are capable of considering complicated ground conditions as well as the effect of ground supports, numerical methods are believed to be very useful in making engineering decisions. The developed routine can be applied to the calculation of the factor of safety of jointed rock slopes or weathered rock slopes where the use of slice method is limited.

  • PDF

Evaluation of Dispersant Application to Stranded Oil as a Clean-up Technique at Sandy Tidal Flat (사질 조간대 표착유의 방제를 위한 유화분산제의 적용 평가)

  • Cheong, Cheong-Jo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.4
    • /
    • pp.227-231
    • /
    • 2008
  • The purpose of this study is to clarify the behavior of stranded crude oil and to estimate the restoration of seawater infiltration by application of dispersant as one of cleaning techniques. We made visualization of infiltration process of seawater and stranded crude oil on the sandy beach sediments by using of a model sandy beach. Major conclusions derived from this study are as follows. The seawater infiltration volume was reduced by the stranded crude oil. However, thirty percentage of the sweater infiltration into the sediments was restored by dispersant application to the penetrated oil in sandy beach. The penetration depth of stranded oil were dropped at first falling tide, but were not significantly fluctuated after that. Moreover, oil concentration was most high within the upper 2 cm. The stranded crude oil was broken into small size droplets and dispersed into the sediments by the dispersant application. Therefore, dispersant applications play an important roles in the large increase of surface area of given volume of oil, and it resulted in promoting to biological degradation process at the oil/water interface, dispersing the stranded oil into the water column and restoration of the supplement of the dissolved oxygen and nutrients to the benthic organisms.

  • PDF

Investigation of Regraphitization during Cam Shaft Remelting (캠 샤프트 재용융 처리시 재흑연화 현상에 관한 연구)

  • Oh, Young-Kun;Kim, Gwang-Soo;Koh, Jin-Hyun
    • Korean Journal of Materials Research
    • /
    • v.8 no.7
    • /
    • pp.648-652
    • /
    • 1998
  • TIG remelting was performed to harden the surface of automobile earn shaft. Multipass remelting was conducted in longitudinal direction under argon gas atmosphere. The microstructure of as-east earn shaft was gray iron which consisted of flake graphite and pearlitic matrix. The remelted area had microstructue of both fine pearlite and ledeburite structure that consisted of globular austenite and $Fe_3C$. Hardness for as-cast earn shaft had HRc 25~28, however it increased at remelted area to HRc 53~55. Black line was found at heat affected zone next to the fusion line, that is remelt area of previous pass, during multipass remelting. Black line was identified as graphite, which was transformed from $Fe_3C$. in the ledeburite structure. It is observed that all graphites were nucleated at $Fe_3C$. and matrix interface. High density energy laser remelting process was also applied to verify whether black line could be eliminated. However, black line was still existed as observed in TIG remelting process. Regraphitization was simulated on the ledeburitic structure specimen using Gleeble 1500 with conditions of 1100 and 100$0^{\circ}C$ for 0.5, I, 3, 5 and 1Osee. From the fact that graphite was formed even at the simulation condition of 100$0^{\circ}C$ for 0.5sec, it is seen that regraphitization is an inevitable phenomenon generated whatever processes used during multipass overlap remelting.

  • PDF

Analysis on the Change in the Pan Evaporation Rate in the Coastal Zone (우리나라 연안의 팬증발량 변화 양상 분석)

  • Lee, Khil-Ha;Oh, Nam-Sun;Jeong, Shin-Taek
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.3
    • /
    • pp.244-252
    • /
    • 2007
  • A long-term change in the evaporation rate have an influence on the hydrologic processes at the interface between the land surface-air and crop yield. Several previous studies have reported declines in pan evaporation rate, while actual evaporation rate is expected to increase due to anthropogenic global change in the future. The decreasing trend of pan evaporation rate might be involved with global warming and accordingly the trend of annual pan evaporation rate also needs to be checked here in Korea. In this study, 14 points of pan evaporation observation are intensively studied to investigate the trend of pan evaporation for the time period of 1970-2000. Annual pan evaporation is decreasing at the rate of 1.6mm/yr, which corresponds to approximately 50mm for 30 years. Annual pan evaporation rate is larger by $\sim10%$ at the coastal area and decreasing rate is faster as -2.46 mm/yr per year, while that is -0.82 mm/yr per year at the in-land area. The results of the Mann-Kendall trend test shows 4 points are decreasing and 10 points are unchanged with 95% confidence interval. But national annual average values show the decreasing trend of pan evaporation rate as a whole, which corresponds to general trend all over the world. This study will contribute to a variety of studies on water resources, hydrology, agricultural engineering, meteorology, and coastal engineering in association with future global climate change.

Sea Level Rise Around Jeju Island due to Global Warming and Movement of Groundwater/seawater Interface in the Eastern Part of Jeju Island (지구온난화에 따른 제주도 근해의 해수면 상승과 제주도 동부 지역 지하수의 염수대 변화)

  • Kim, Kyung-Ho;Shin, Ji-Youn;Koh, Eun-Heui;Koh, Gi-Won;Lee, Kang-Kun
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.3
    • /
    • pp.68-79
    • /
    • 2009
  • Groundwater is the main water resource in Jeju Island because storage of surface water in reservoir is difficult in the island due to the permeable volcanic rocks. Because of this reason, the groundwater is expected to be very vulnerable to seawater intrusion by global warming, which will cause sea level rise. The long term change of mean sea level around the Korean Peninsula including Jeju Island was analyzed for this study. The sea level rise over the past 40 years was estimated to be of $2.16\;{\pm}\;1.71\;mm/yr$ around the Korean Peninsula. However, the rising trend around the eastern part of Jeju Island was more remarkable. In addition, the groundwater/seawater intrusion monitoring network operated by the Jeju Special Self-Governing Province shows that seawater intrusion becomes more prominent during dry 4-5 months in a year when the sea level increases. This implies that the fresh groundwater lens in the eastern part of Jeju Island is influenced by the sea level rise due to global warming in the long term scale.

Evaluation of Hydraulic Conductivity of Slurry-wall-type Vertical Cutoff Wall with Consideration of Filter Cake (필터케이크(filter cake)를 고려한 슬러리월 연직차수벽의 현장투수계수 평가)

  • Nguyen, The Bao;Lee, Chul-Ho;Choi, Hang-Seok;Kim, Sang-Gyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.11
    • /
    • pp.121-131
    • /
    • 2008
  • In constructing a slurry trench cutoff wall, bentonite-water slurry is used to secure the stability of sidewalls during excavation before the wall is completed by backfilling. Unexpectedly, a thin but relatively impermeable layer called filter cake can be formed on the excavation surface, which significantly influences the result of slug test analysis in the cutoff wall if not considered. This study is to examine the effect of filter cake on evaluating hydraulic conductivity of the vertical cutoff wall through slug test analysis with the aid of the verified numerical program Slug_3D. The no-flux boundary conditions were adopted in Slug_3D to simulate the filter cake on the interface between the wall and the natural soil. A new set of type curves were built for applying the type curve method. New modification factors were obtained for using the modified line-fitting method. With consideration of filter cake, the type curve method and the modified line-fitting method were adopted to reanalyze the case study taken from EMCON (1995). The previous results achieved by Choi and Daniel (2006) without consideration of filter cake were compared with the present results obtained in this paper. The comparison emphasizes the necessity of considering filter cake when analyzing slug test results in vertical cutoff walls.

Study on Sn-Ag-Fe Transient Liquid Phase Bonding for Application to Electric Vehicles Power Modules (전기자동차용 파워모듈 적용을 위한 Sn-Ag-Fe TLP (Transient Liquid Phase) 접합에 관한 연구)

  • Byungwoo Kim;Hyeri Go;Gyeongyeong Cheon;Yong-Ho Ko;Yoonchul Sohn
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.4
    • /
    • pp.61-68
    • /
    • 2023
  • In this study, Sn-3.5Ag-15.0Fe composite solder was manufactured and applied to TLP bonding to change the entire joint into a Sn-Fe IMC(intermetallic compound), thereby applying it as a high-temperature solder. The FeSn2 IMC formed during the bonding process has a high melting point of 513℃, so it can be stably applied to power modules for power semiconductors where the temperature rises up to 280℃ during use. As a result of applying ENIG surface treatment to both the chip and substrate, a multi-layer IMC structure of Ni3Sn4/FeSn2/Ni3Sn4 was formed at the joint. During the shear test, the fracture path showed that cracks developed at the Ni3Sn4/FeSn2 interface and then propagated into FeSn2. After 2hours of the TLP joining process, a shear strength of over 30 MPa was obtained, and in particular, there was no decrease in strength at all even in a shear test at 200℃. The results of this study can be expected to lead to materials and processes that can be applied to power modules for electric vehicles, which are being actively researched recently.

Functional Verification of Nylon Wire Cutting-Type Holding & Release Mechanism for 6U CubeSat's Solar Panel (나일론선 절단방식 6U 큐브위성용 태양전지판 구속분리장치의 기능검증)

  • Park, Yeon-Hyeok;Go, Ji-Seong;Chae, Bong-Geon;Lee, Seong-Ho;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.10
    • /
    • pp.867-875
    • /
    • 2018
  • Conventional nylon wire cutting-type holding and release mechanisms (HRMs) are limited to securely hold the solar panel under launch environment as the size of the panel increases because the nylon wire is tightened directly on the surface of the solar panel. In this study, we proposed a nylon wire cutting-type HRM for 6U CubeSat's solar panel applying elliptic-shaped bracket with a Ball & Socket interface. The proposed HRM has the advantage of higher holding capability along in-plane and out-of plane directions of solar panel and simplicity in tightening process of nylon wire. The design drivers of structural design of CubeSat's solar panel with the proposed HRM were defined by structural analysis under launch loads. In addition, The design effectiveness of the proposed HRM was verified through the functional tests according to the thickness of nylon wire and the number of wire winding under various temperature conditions.

A Study on the Measurement Method for Benthic Nutrient Flux in Freshwater Sediments (담수 퇴적물의 영양염 용출 측정 방법에 관한 고찰)

  • Kim, Kyung Hee;Kim, Sung-Han;Jin, Dal Rae;Huh, In Ae;Hyun, Jung-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.5
    • /
    • pp.288-302
    • /
    • 2017
  • Accurate measurement of benthic nutrient fluxes (BNF) is a prerequisite for evaluating the effect of sediments on nutrient cycle in the surface water. The intact sediment cores were collected in July 2015 at the midstream of Nakdong River. We identified pre-incubation time (6, 12, 24 hr), dissolved oxygen concentration (90, 70, 50% saturation), diffusive boundary layer thickness (0, 0.6-0.8, 1.2-1.4 mm), and incubation temperature (10, 17, 20, $25^{\circ}C$) as the most important control factors, and measured the BNF fluctuation with the variation of these factors using the laboratory sediment core incubation method. Since the chemical composition, redox condition, hydrodynamic regimes and microbial activities at the sediment-water interface were changed as a result of the alteration of control factors, sediment core incubation should be conducted under as close to the natural conditions of study site as possible, in order to produce the results similar to actual values. Relative percentage differences between two replicates were below 20% in most control factors, which showed satisfactory precision for strict compliance with the experimental conditions and procedures. In the further studies, we will compare the results of core incubation with those of in situ measurements to confirm the accuracy of the sediment core incubation method.