• 제목/요약/키워드: surface alloying technology

검색결과 80건 처리시간 0.026초

12% Cr 로터강의 강도 개선에 관한 연구 (Study on the Improvement of Strength for 12% Chromium Steel Rotor)

  • 장윤석;오세욱
    • 한국해양공학회지
    • /
    • 제3권2호
    • /
    • pp.125-137
    • /
    • 1989
  • To check technical improvement in the soundness and strength of 12% Cr steel rotor, a 25 tons of rotor with 65 tons of ingot was made in real size and was cut to pieces to take test samples, and the various mechanical tests such as impact, tensile, creep, and fatigue were carried out. The strengths are compared with those of 1% Cr-Mo-V rotor of same size. Microstructures of the samples are examined and reviewed. The results can be summarized as follows. 1) Fracture appearance transition temperatures are 80.deg. C at the center part and 60.deg. C near surface of 12% Cr rotor, and 8.deg. C near surface of 1% Cr-Mo-V rotor. 2) Comparative rapid softening occurs at higher temperatures above 600.deg. C for 12% Cr steel and 550.deg. C for 1% Cr-Mo-V steel in tension tests. 3) Fatigue crack propagation rate of 12% Cr steel is almost same as that of 1% Cr-Mo-V steel at the same corresponding surface part of the rotors. The crack growth rate of center part of 12% Cr rotor is faster than near surface part of the rotor, and the crack growth rate at the load condition of R=0.04 is slower than that of the load condition of R=0.5 for both 12% Cr steel and 1% Cr-Mo-V steel. 4) Crack growth rate of radial direction near surface of 12% Cr rotor is faster than that of transverse direction at the same part because of the difference in residual stresses. 5) Both creep and fatigue strengths of 12% Cr steel are superior to those of 1% Cr-Mo-V steel and the difference is thought the effect of climb and glide controlled creep by solid solution of alloying elements and dispersion of carbides.

  • PDF

12% Cr 로터강의 강도 개선에 관한 연구 (Study on the Improvement of Strength for 12% Chromium Steel Rotor)

  • 장윤석;오세욱
    • 한국해양공학회지
    • /
    • 제3권2호
    • /
    • pp.625-625
    • /
    • 1989
  • To check technical improvement in the soundness and strength of 12% Cr steel rotor, a 25 tons of rotor with 65 tons of ingot was made in real size and was cut to pieces to take test samples, and the various mechanical tests such as impact, tensile, creep, and fatigue were carried out. The strengths are compared with those of 1% Cr-Mo-V rotor of same size. Microstructures of the samples are examined and reviewed. The results can be summarized as follows. 1) Fracture appearance transition temperatures are 80.deg. C at the center part and 60.deg. C near surface of 12% Cr rotor, and 8.deg. C near surface of 1% Cr-Mo-V rotor. 2) Comparative rapid softening occurs at higher temperatures above 600.deg. C for 12% Cr steel and 550.deg. C for 1% Cr-Mo-V steel in tension tests. 3) Fatigue crack propagation rate of 12% Cr steel is almost same as that of 1% Cr-Mo-V steel at the same corresponding surface part of the rotors. The crack growth rate of center part of 12% Cr rotor is faster than near surface part of the rotor, and the crack growth rate at the load condition of R=0.04 is slower than that of the load condition of R=0.5 for both 12% Cr steel and 1% Cr-Mo-V steel. 4) Crack growth rate of radial direction near surface of 12% Cr rotor is faster than that of transverse direction at the same part because of the difference in residual stresses. 5) Both creep and fatigue strengths of 12% Cr steel are superior to those of 1% Cr-Mo-V steel and the difference is thought the effect of climb and glide controlled creep by solid solution of alloying elements and dispersion of carbides.

기계적 합금화 공정을 이용하여 제조한 n형 $Bi_2({Te_{0.85}}{Se_{0.15}})_3$ 가압소결체의 열전특성 (Thermoelectric Properties of the Hot-pressed n-Type $Bi_2({Te_{0.85}}{Se_{0.15}})_3$ Alloy Prepared by Mechanical Alloying)

  • 김희정;오태성;현도빈
    • 한국재료학회지
    • /
    • 제10권3호
    • /
    • pp.246-252
    • /
    • 2000
  • 기계적 합금화 공정을 이용하여 제조한 $Bi_2(Te_{0.85}Se_{0.15})_3$ 가압소결체의 가압소결온도에 따른 열전특성을 분석하였다. $Bi_2(Te_{0.85}Se_{0.15})_3$ 가압소결체는 $300^{\circ}C$에서 $550^{\circ}C$ 범위의 가압소결온도에 무관하게 n형 전도를 나타내었다. $Bi_2(Te_{0.85}Se_{0.15})$ 합금분말을 (50% $H_2+50%$ Ar) 분위기에서 환원처리시, 분말 표면의 산화층 제거 및 과잉 Te 공격자의 소멸에 기인한 전자 농도의 감소로 가압소결체의 Seebeck 계수가 양의 값으로 변화하였다. $450^{\circ}C$ 이상의 온도에서 가압소결시 가압소결온도의 증가에 따라 $Bi_2(Te_{0.85}Se_{0.15})$ 합금의 성능지수가 증가하였으며, $550^{\circ}C$에서 가압소결시 $1.92{\times}10^{-3}/K$의 최대성능지수를 얻을 수 있었다.

  • PDF

MA법에 의한 Heusler Fe2VAl 합금분말의 제조 및 치밀화 (Fabrication and densification of Heusler Fe2VAl alloy powders by mechanical alloying)

  • 김광덕;이충효
    • 한국결정성장학회지
    • /
    • 제23권1호
    • /
    • pp.51-57
    • /
    • 2013
  • 본 연구에서는 Heusler $Fe_2VAl$ 열전화합물을 제조하기 위하여 순금속 $Fe_{50}V_{25}Al_{25}$ 혼합분말을 기계적 합금화 처리하였다. $Fe_2VAl$ 열전화합물을 얻기 위하여 최적 볼밀조건 및 열처리 조건을 X선 회절분석과 시차주사 열량분석을 이용하여 조사하였다. $Fe_{50}V_{25}Al_{25}$ 혼합분말을 60시간까지 볼밀 처리한 경우 bcc 구조의 ${\alpha}$-(Fe,V,Al) 고용체가 얻어졌다. 단상의 Heusler $Fe_2VAl$ 화합물은 $Fe_{50}V_{25}Al_{25}$ 혼합분말을 60시간 동안 MA 처리 후 $700^{\circ}C$까지 열처리함으로써 얻을 수 있었다. MA 분말시료의 치밀화를 위하여 인가압력 60 MPa 및 소결온도 $900{\sim}1000^{\circ}C$에서 흑연다이를 사용하여 SPS 소결을 실시하였다. $1000^{\circ}C$에서 SPS 소결 후 얻어진 벌크체의 Vickers 경도는 870으로 매우 높은 값을 보였다. 또한 SPS 법으로 얻어진 벌크체의 밀도측정 결과, 모든 시료에서 상대밀도 90 % 이상의 금속광택을 나타내는 치밀한 소결체임을 알 수 있었다.

기계적 합금화에 의한 Mg-Si계 열전화합물의 합성 및 평가 (Synthesis and characterization of Mg-Si thermoelectric compound subjected to mechanical alloying)

  • 이충효
    • 한국결정성장학회지
    • /
    • 제17권3호
    • /
    • pp.121-127
    • /
    • 2007
  • 본 연구에서는 나노결정립의 $Mg_2Si$ 열전화합물을 제조하기 위하여 기계적 합금화(MA)를 적용하였다. 단상의 초미세 $Mg_2Si$ 열전화합물을 얻기 위하여 최적 볼밀조건 및 열처리 조건을 X선 회절분석과 시차주사 열량분석을 이용하여 조사하였다. $Mg_{66.7}Si_{33.3}$ 혼합분말을 $20{\sim}180$시간까지 볼밀 처리한 경우 모든 시료에서 $220^{\circ}C$$570^{\circ}C$ 근방에 broad한 발열 반응이 관찰되었다. 한편 $Mg_{66.7}Si_{33.3}$ 혼합분말을 260시간 동안 볼밀 처리한 경우 $230^{\circ}C$에 예리한 발열피크를 보였다. 단상의 $Mg_2Si$ 화합물은 $Mg_{66.7}Si_{33.3}$ 혼합분말을 60시간 동안 MA처리 후 $620^{\circ}C$까지 열처리함으로써 얻을 수 있었다. MA분말시료의 치밀화는 50MPa, $800{\sim}900^{\circ}C$에서 흑연다이를 사용하여 SPS 소결을 실시하였다. Mg-Si계 MA 분말시료의 SPS 소결시 수축은 $200^{\circ}C$ 근방에서 현저하게 관찰되었다. SPS법으로 고화된 성형체의 밀도측정 결과, 모든 시료에서 이론밀도의 94% 이상 금속광택을 나타내는 치밀한 소결체임을 알 수 있었다.

Atmospheric Corrosion Process for Weathering Steel

  • Nagano, Hiroo;Yamashita, Masato
    • Corrosion Science and Technology
    • /
    • 제7권2호
    • /
    • pp.119-124
    • /
    • 2008
  • Steel is generally not corrosion resistant to water with formation of non protective rusts on its surface. Rusts are composed of iron oxides such as $Fe_3O_4$, $\alpha-$, $\beta-$, $\gamma-$and ${\delta}-FeOOH$. However, steel, particularly weathering steel containing small amounts of Cu, Ni and Cr etc., shows good corrosion resistance against rural, industrial or marine environment. Its corrosion rate is exceedingly small as compared with that of carbon steel. According to the exposure test results undertaken in outdoor environments, the atmospheric corrosion rate for weathering steel is only 1 mm for a century. Atmospheric corrosion for steels proceeds under alternate dry and wet conditions. Dry condition is encountered on steel surface on fine or cloudy days, and wet condition is on rainy or snowy days. The reason why weathering steel shows superior atmospheric corrosion resistance is due to formation of corrosion protective rusts on its surface under very thin water layer. The protective rusts are usually composed of two layer rusts; the upper layer is ${\gamma}-FeOOH$ termed as lepidocrocite, and inner layer is nano-particle ${\alpha}-FeOOH$ termed as goethite. This paper is aimed at elucidating the atmospheric corrosion mechanism for steel in comparison with corrosion in bulky water environment by use of empirical data.The summary is as follows: 1. No corrosion protective rusts are formed on steel in bulky water. 2. Atmospheric corrosion for steel is the corrosion under wetting and drying conditions. Corrosion and passivation occur alternately on steel surface. Steel, particularly weathering steel with small amounts of alloying elements such as Cu, Ni and Cr etc. enhances forming corrosion protective rusts by passivation.

Si, Mn함유 IF 고강도강의 소둔거동 및 도금특성에 미치는 이슬점 온도의 영향 (Effect of Dewpoints on Annealing Behavior and Coating Characteristics in IF High Strength Steels Containing Si and Mn)

  • 전선호;신광수;손호상;김대룡
    • 대한금속재료학회지
    • /
    • 제46권7호
    • /
    • pp.427-436
    • /
    • 2008
  • The effect of dewpoints on annealing behavior and coating characteristics such as wettability and galvannealing kinetics was studied by annealing 0.3wt%Si - 0.1~0.4wt% Mn added interstitial-free high strength steels(IF-HSS). The 0.3wt%Si-0.1wt%Mn steel exhibited good wettability with molten zinc and galvannealing kinetics after annealing when the dewpoint of $H_2-N_2$ mixed gas was above $-20^{\circ}C$. It is shown that the wettability and galvannealing kinetics are directly related to the coverage of the external(surface) oxide formed by selective oxidation during annealing. At $N_2-15%H_2$ annealing atmosphere, the increase of dewpoint results in a gradual transition from external to internal selective oxidation. The decrease of external oxidation of alloying elements with a concurrent increase of their subsurface enrichment in the substrate, showing a larger surface area that was free of oxide particles, contributed to the improved wettability and galvannealing kinetics. On the other hand, the corresponding wettability and galvannealing kinetics were deteriorated with the dewpoints below $-20^{\circ}C$. The continuous oxide layer of network and/or film type was formed on the steel surface, leading to the poor wettability and galvannealing kinetics. It causes a high contact angle between annealed surface and molten zinc and plays an interrupting role in interdiffusion of Zn and Fe during galvannealing process.

리튬 이차전지용 전극 및 연료전지 촉매 소재 연구 개발 동향 (Development of Electrode Materials for Li-Ion Batteries and Catalysts for Proton Exchange Membrane Fuel Cells)

  • 윤홍관;김다희;김천중;김용진;민지호;정남기
    • 세라미스트
    • /
    • 제21권4호
    • /
    • pp.388-405
    • /
    • 2018
  • In this paper, we review about current development of electrode materials for Li-ion batteries and catalysts for fuel cells. We scrutinized various electrode materials for cathode and anode in Li-ion batteries, which include the materials currently being used in the industry and candidates with high energy density. While layered, spinel, olivine, and rock-salt type inorganic electrode materials were introduced as the cathode materials, the Li metal, graphite, Li-alloying metal, and oxide compound have been discussed for the application to the anode materials. In the development of fuel cell catalysts, the catalyst structures classified according to the catalyst composition and surface structure, such as Pt-based metal nanoparticles, non-Pt catalysts, and carbon-based materials, were discussed in detail. Moreover, various support materials used to maximize the active surface area of fuel cell catalysts were explained. New electrode materials and catalysts with both high electrochemical performance and stability can be developed based on the thorough understanding of earlier studied electrode materials and catalysts.

기계적 합금화 공정에 의한 Hf계 비정질 분말의 미세변형거동 관찰 (Micro-deformation behavior of Brittle Hf-based Metallic Glass during Mechanical Milling)

  • 김송이;이아영;차은지;권도훈;홍성욱;이민우;김휘준;이민하
    • 한국분말재료학회지
    • /
    • 제25권3호
    • /
    • pp.246-250
    • /
    • 2018
  • In this study, we investigate the deformation behavior of $Hf_{44.5}Cu_{27}Ni_{13.5}Nb_5Al_{10}$ metallic glass powder under repeated compressive strain during mechanical milling. High-density (11.0 g/cc) Hf-based metallic glass powders are prepared using a gas atomization process. The relationship between the mechanical alloying time and microstructural change under phase transformation is evaluated for crystallization of the amorphous phase. Planetary mechanical milling is performed for 0, 40, or 90 h at 100 rpm. The amorphous structure of the Hf-based metallic glass powders during mechanical milling is analyzed using differential scanning calorimetry (DSC) and X-ray diffraction (XRD). Microstructural analysis of the Hf-based metallic glass powder deformed using mechanical milling reveals a layered structure with vein patterns at the fracture surface, which is observed in the fracture of bulk metallic glasses. We also study the crystallization behavior and the phase and microstructure transformations under isothermal heat treatment of the Hf-based metallic glass.

방열소재용 알루미늄 주조합금 설계 및 특성평가 (Design and Evaluation of Aluminum Casting Alloys for Thermal Managing Application)

  • 신제식;김기태;고세현;안동진;김명호
    • 한국주조공학회지
    • /
    • 제33권1호
    • /
    • pp.22-31
    • /
    • 2013
  • In order to develop an aluminum alloy, that can combine high thermal conductivity and good castability and anodizability, aluminum alloys with low Si content, such as Al-(0.5~1.5)Mg-1Fe-0.5Si and Al-(1.0~1.5)Si-1Fe-1Zn, were designed. The developed aluminum alloys exhibited 170~190% thermal conductivity (160~180 W/mK), 60~85% fluidity, and equal or higher ultimate tensile strength compared with those of the ADC12 alloy. In each developed alloy system, the thermal conductivity decreased and the strength increased with the increment of Mg and Si, which are the significant alloying elements. The fluidity was in reverse proportion to the Mg content and in proportion to the Si content. The Al-(0.5~1.5)Mg-1Fe-0.5Si alloys exhibited better fluidity in thick-wall castings, while the Al-(1.0~1.5)Si-1Fe-1Zn alloys were better in thin-wall castability due to their lower surface energies. The fluidity behavior was complexly affected by the heat release for the solidification, viscosity, solidification range, and the type, quantity, and formation juncture of the main secondary phase.