• Title/Summary/Keyword: surface activation

Search Result 1,420, Processing Time 0.026 seconds

Interfacial Structures and Activation Processes of Doped Si Semiconductors (Doping된 Si반도체의 계면구조와 활성화과정)

  • Chun, Jang-Ho
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.7
    • /
    • pp.1042-1048
    • /
    • 1990
  • The approximations of charge relationships at normally doped semiconductor interfaces were qualitatively derived basis on electrical neutrality conditions. Effects of ion adsorptions, activation processes, interfacial structures, rectifying phenomena, and effects of surface potential barriers at the p- and n-Si/CsNO3 aqueous electrolytes, and the p-Si/(1HF:3HNO3:6H2O) electrolyte solutions were investigated using a cyclic voltammetric method. The space charge acts the most important role for the pn junction structures, the rectifying phenomena, and the activation processes. The Current-Voltage (I-V) characteristics curves significantly depend on developing of the Helmholtz double layers and charging of the show surface states during the activation processes. A linear Current-Voltage characteristics region was observed at the p-Si/(1HF:3HNO3: 6H2O) electrolyte solution interface.

  • PDF

Selective Contact Hole Filling by electroless Ni Plating (무전해 Ni 도금에 의한 선택적 CONTACT HOLE 충전)

  • 우찬희;권용환;김영기;박종완;이원해
    • Journal of the Korean institute of surface engineering
    • /
    • v.25 no.4
    • /
    • pp.189-206
    • /
    • 1992
  • The effect of activation and electroless nickel plating conditions on contact properties was investi-gated for selective electroless nickel plating of Si wafers in order to obtain an optimum condition of con-tact hole filling. According to RCA prosess, p-type silicon (100) surface was cleaned out and activated. The effects of temperature, DMAB concentration, time, and strirring were investigated for activation of p-type Si(100) surface. The optimal activation condition was 0.2M HF, 1mM PdCl2, 2mM EDTA,$ 70^{\circ}C$, and 90sec under ultrasonic vibration. In electroless nickel plating, the effect of temperature, DMAB concentra-tion, pH, and plating time were studied. The optimal plating condition found was 0.10M NiSO4.H2O, 0.11M Citrate, pH 6.8, $60^{\circ}C$, 30minutes. The contact resistance of films was comparatively low. It took 30minutes to obtain 1$\mu\textrm{m}$ thick film with 8mM DMAB concentration. The film surface roughness was improved with decreasing temperature and decreasing pH of the plating solution. The best quality of the film was obtained at the condition of temperature $60^{\circ}C$ and pH 6.0. The micro-vickers hardness of film was about 800Hv. Plating rate of nickel on the hole pattern was slower than that of nickel on the line pattern.

  • PDF

Activated Carbon Fibers from Chemically Modified Coal Tar Pitches

  • Ryu, S.K.;Shim, J.W.;Yang, K.S.;Mochida, I.
    • Carbon letters
    • /
    • v.1 no.1
    • /
    • pp.6-11
    • /
    • 2000
  • Coal tar pitch was chemically modified with 10 wt% benzoquinone (BQ) to raise the softening point of isotropic pitch precursor and the precursor was melt-spun into pitch fibers, stabilized, carbonized and activated with steam at $900^{\circ}C$. The weight loss of carbon fiber-benzoquinone (CF-BQ) increased with the increase of activation time like other fibers, but was lower than those of Kureha fiber at the same activation time in spite of larger geometric surface area. Those adsorption isotherms fitted into 'Type I' according to Brunauer, Deming, Deming and Teller classification. However, there was very thin low-pressure hysteresis that lower closure points of the hysteresis are about 0.42-0.45. From the pore size distribution curves, there might be some micropores having narrow-necked bottle; a series of interconnected pore is more likely than discrete bottles. FT-IR studies showed that the functional groups such as carboxyl, quinone, and phenol were introduced to ACFs-BQ surface after steam activation. Methylene blue decolorization and iodine adsorption capacity of ACF-BQ increased linearly with the increase of specific surface area and was larger than that of ACF-Kureha at the same specific surface area.

  • PDF

Effect of Uneven Surface Gait Training on Ankle Muscle Activation and Balance in Stroke Patients

  • Ji, Young-Ho;Lee, Jae-Kwang;Lee, Jong-Kyung
    • The Journal of Korean Physical Therapy
    • /
    • v.34 no.4
    • /
    • pp.161-167
    • /
    • 2022
  • Purpose: The purpose of this study was to investigate the effects of regular training on the uneven surface that stroke patients encounter in their daily life on their ankle joint muscle activity and balance ability. They were divided into two groups: the gait training group on uneven surfaces and the gait training group on normal surfaces. Methods: In this study, 30 patients diagnosed with stroke and undergoing rehabilitation were selected. 15 people in the uneven surface gait training group and 15 people in the flat gait training group were selected. The muscle activation of the ankle muscles was measured when walking again on a even surface after walking on an uneven surface and on a flat ground. After each gait training, the limit of stability and Romberg test were performed to evaluate the balance ability. Results: As a result of the experimental results before and after walking by group, the tibialis anterior muscle activity of the paralyzed side was significantly decreased in the uneven surface walking group. As a result of measuring balance ability after training, the limit of stability in all directions was significantly increased in the uneven surface gait training group, and the area and length moved significantly decreased in the uneven surface gait training group in the Romberg test as well (p<0.05). Conclusion: After walking on uneven surface, it was confirmed that the muscle activity of the ankle joint decreased in normal flat walking, and thus the efficiency of muscle activity was increased. In addition, it was possible to confirm the improvement of the balance ability of the gait training on the uneven surface, and in conclusion, it could be confirmed that it had an effect on the improvement of the walking ability.

Characterization of Activation of Various Carbon Fibers via Chemical Activation with KOH (KOH에 의한 활성화된 탄소섬유들의 활성화특성)

  • Lim, Yun-Soo;Moon, Sook-Young;Han, Dong-Yun;Lee, Byung-Ha
    • Journal of the Korean Applied Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.43-49
    • /
    • 2005
  • OXI-PAN fibers, Kynol fibers and rayon fibers were used as precursorsfor the preparation of activated carbon fibers (ACFs) by chemical activation with KOH at $800^{\circ}C$. The effects of different precursorfibers and fiber/KOH ratios on the final ACFs are discussed. The precursor fibers used are appropriate for the ACFs in a single stage pyrolysis process. The OXI-PAN fibers which were activated with KOH of 2.0M showed a specific surface area of $2328m^2/g$ however, loosed the fiber shape because of low yields. The Kynol fibers and Rayon fibers showed the high yields but the lower specific surface area of $900m^2/g$ and $774m^2/g$, respectively, at KOH of 1.5M. The OXI-PAN fibers which were activated with KOH of 1.5M have a specific surface area of $1028m^2/g$ and higher micro-pore volumes and lower yields rather than Kynol-1.5 and Rayon-1.5 samples. This phenomenon is because of higher chemical resistance of the Kynol and Rayon fibers rather than OXI-PAN fibers. However, the Kynol fibers were the best precursors on KOH activation at $800^{\circ}C$ considered carbon yields, surface areas and micropore volumes.

The effect of the surface activation treatment on the crystallization of amorphous silicon thin film (표면 활성화 처리가 비정질 규소 박막의 결정화에 미치는 영향)

  • 이의석;김영관
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.2
    • /
    • pp.173-179
    • /
    • 1999
  • The effect of the surface activation treatment on the crystallization of the amorphous silicon film was investigated. The amorphous silicon film was deposited on the silica substrate with LPCVD technique. Wet blasting with silica slurry or exposure with Nd:YAG laser beam was applied on the amorphous silicon film before annealing for the crystallization. For the analysis of the crystallinity, XRD, Raman, and SEM were employed. In this investigation, the prior surface activation treatment like silica wet blasting or Nd:YAG laser beam exposure before annealing for the crystallization were found to be effective in the enhancement of the crystallization. It is believed that these treatment lower the activation energy required for the crystallization of the amorphous silicon film.

  • PDF

Comparative studies of porous carbon nanofibers by various activation methods

  • Lee, Hye-Min;Kang, Hyo-Rang;An, Kay-Hyeok;Kim, Hong-Gun;Kim, Byung-Joo
    • Carbon letters
    • /
    • v.14 no.3
    • /
    • pp.180-185
    • /
    • 2013
  • In this study, activated carbons nanofibers (ACNFs) were prepared from polyacrylonitrile-based nanofibers by physical ($H_2O$ and $CO_2$) and chemical (KOH) activation. The surface and structural characteristics of the porous carbon were observed by scanning electron microscopy and X-ray diffraction, respectively. Pore characteristics were investigated by $N_2$/77K adsorption isotherms. The specific surface area of the physically ACNFs was increased up to $2400m^2/g$ and the ACNFs were found to be mainly composed of micropore structures. Chemical activation using KOH produced ACNFs with high specific surface area (up to $2500m^2/g$), and the micropores were mainly found in the ACNFs. The physically and chemically ACNFs showed both mainly type I from the International Union of Pure and Applied Chemistry classification.

Effect of EB-PVD Coated Si/HA Film Thickness on Surface Characteristics of Ti-35Nb-10Zr Alloy

  • Jeong, Yong-Hoon;Eun, Sang-Won;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.213-213
    • /
    • 2012
  • In this study, effect of EB-PVD coated Si/HA film thickness on surface characteristics of Ti-35Nb-10Zr alloy was investigated. The Ti-35Nb-10Zr alloy was fabricated by arc melting method. The Si/HA layers were coated with 0.8 wt.% of Si in pure HA by EB-PVD method. The coating thickness was consisted with 100 - 300 nm for each group, the surface characteristics was analyzed by FE-SEM, EDS, XRD, XRF and corrosion test. The Si/HA coating layer was well deposited on the alloy surface by EB-PVD, the thickness was correlative factor with HA peaks and corrosion resistance value.

  • PDF

Surface Characteristics and Electrochemical Behaviors of TiN and ZrN Coated Orthodontic Mini-screw (ZrN 및 TiN 코팅된 치과교정 용 미니나사의 표면특성과 전기화학적 거동)

  • Kim, S.J.;Moon, Y.P.;Park, G.H.;Jo, H.H.;Kim, W.G.;Son, M.K.;Choe, H.C.
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.5
    • /
    • pp.232-239
    • /
    • 2008
  • The dental orthodontic mini-screw requires good mechanical properties and high corrosion resistance for implantation in the bone. The purpose of this study was to investigate the electrochemical characteristics of TiN and ZrN coated orthodontic mini-screws, mini-screws were used for experiment. Ion plating was carried out for mini-screw using Ti and Zr coating materials with nitrogen gas. Ion plated surface of each specimen w as o bserved with f ield emission scanning e lectron microscopy ( FE-SEM), e nergy dispersive x-ray spectroscopy (EDX), and electrochemical tester. The surface of TiN and ZrN coated mini-screw were more smooth than that of other kinds of non-coated mini-screw due to dercrease of machined defects. The corrosion current density of the TiN and ZrN coated mini-screw decreased compared to non-coated sample. The corrosion potential of TiN and ZrN coated mini-screw were higher than that of non-coated mini-screw in 0.9% NaCl solution. The pitting corrosion resistance increased in the order of ZrN coated, TiN coated and non-coated wire. Pitting potential of ZrN coated mini-screw was the highest in the other specimens.

Surface Characteristics of Dental Implant Fixture with Various Manufacturing Process (치과 임플란트 고정체의 여러 가지 제조공정과정에 따른 표면특성)

  • Jeong, Yong-Hoon;Moon, Young-Pil;Lee, Chung-Hwan;Yu, Jin-Woo;Choe, Han-Cheol
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.1
    • /
    • pp.17-24
    • /
    • 2010
  • In this study, surface characteristics of dental implant fixture with various manufacturing process have been researched using electrochemical methods. The dental implant fixture was selected with 5 steps by cleaning, surface treatment and sterilization with same size and screw structure; the 1st step-machined surface, 2nd step-cleaned by thinner and prosol solution, 3th step-surface treated by RBM (resorbable blasting media) method, 4th step-cleaned and dried, 5th step-sterilized by gamma-ray. The electrochemical behavior of dental implant fixture has been evaluated by using potentiostat (EG&G Co, 2273A) in 0.9% NaCl solution at $36.5{\pm}1^{\circ}C$. The corrosion surface was observed using field-emission scanning electron microscopy (FE-SEM) and energy dispersive x-ray spectroscopy (EDS). The step 5 sample showed the cleaner and rougher surface than step 3 sample. The step 5 sample of implant fixture treated by RBM and gamma sterilization showed the low corrosion current density compared to others. Especially, the step 3 sample of implant fixture treated by RBM was presented the lowest value of corrosion resistance and the highest value of corrosion current density. The step 3 sample showed the low value of polarization resistance compared to other samples. In conclusion, the implant fixture treated with RBM and gamma sterilization has the higher corrosion resistance, and corrosion resistance depends on the step of manufacturing process.