• 제목/요약/키워드: surface activation

검색결과 1,422건 처리시간 0.028초

Lysophosphatidylcholine induces azurophil granule translocation via Rho/Rho kinase/F-actin polymerization in human neutrophils

  • Ham, Hwa-Yong;Kang, Shin-Hae;Song, Dong-Keun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제26권3호
    • /
    • pp.175-182
    • /
    • 2022
  • Translocation of azurophil granules is pivotal for bactericidal activity of neutrophils, the first-line defense cells against pathogens. Previously, we reported that lysophosphatidylcholine (LPC), an endogenous lipid, enhances bactericidal activity of human neutrophils via increasing translocation of azurophil granules. However, the precise mechanism of LPC-induced azurophil granule translocation was not fully understood. Treatment of neutrophil with LPC significantly increased CD63 (an azurophil granule marker) surface expression. Interestingly, cytochalasin B, an inhibitor of action polymerization, blocked LPC-induced CD63 surface expression. LPC increased F-actin polymerization. LPC-induced CD63 surface expression was inhibited by both a Rho specific inhibitor, Tat-C3 exoenzyme, and a Rho kinase (ROCK) inhibitor, Y27632 which also inhibited LPC-induced F-actin polymerization. LPC induced Rho-GTP activation. NSC23766, a Rac inhibitor, however, did not affect LPC-induced CD63 surface expression. Theses results suggest a novel regulatory mechanism for azurophil granule translocation where LPC induces translocation of azurophil granules via Rho/ROCK/F-actin polymerization pathway.

EMG Study for Muscle Activation during Variable Gait Training in Stroke Patients: Stepper Climbing, Stair-up and Level-ground Gait

  • Kim, Cho-Rong;Choi, Sung-Jin;Shin, Won-Seob
    • The Journal of Korean Physical Therapy
    • /
    • 제25권6호
    • /
    • pp.393-398
    • /
    • 2013
  • Purpose: The purpose of this study was to compare muscle activation patterns of lower extremities in stroke patients during stepper climbing, stair-up, and level-ground gait conditions by surface electromyography (EMG). Methods: Subjects included 19 hemiplegic patients comprehensive rehabilitation center for inpatients with stroke. Surface EMG was used to measure the subjects' medial gastrocnemius (GCM), tibialis anterior (TA), biceps femoris (BF), and rectus femoris (RF) activity as they took six steps during stepper climbing, stair-up, and level-ground gait conditions. Results: There was no significant difference in the BF or RF muscle activity for the stepper climbing, stair-up, and level-ground gait conditions. However, there were significant differences in the medial GCM and TA muscle activity between each condition on the patients' hemiplegic side(p<0.05). There was significant difference in the medial GCM, TA, RF, and BF muscle activity between each condition on the patients' non-hemiplegic side (p<0.05). Conclusion: As a result, the overall muscle activity during the level-ground gait was higher than the stair-up condition, and the muscle activity during the stair-up condition was higher than the muscle activity during the stepper climbing condition. As one of the many methods used for gait training, we suggest that the stepper exercise could be applied at an earlier stage in the gait training process.

Study on the Kinetics and Mechanism of Grain Growth during the Thermal Decomposition of Magnesite

  • Fu, Da-Xue;Feng, Nai-Xiang;Wang, Yao-Wu
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권8호
    • /
    • pp.2483-2488
    • /
    • 2012
  • The X-ray line broadening technique was used to calculate the grain size of MgO at 1023, 1123, 1223 K respectively either in $CO_2$ or during the thermal decomposition of magnesites in air as well as in vacuum. By referring to the conventional grain growth equation, $D^n=kt$, the activation energy and pre-exponential factor for the process in air are gained as 125.8 kJ/mol and $1.56{\times}10^8\;nm^4/s$, respectively. Ranman spectroscopy was employed to study the surface structure of MgO obtained during calcination of magnesite, by which the mechanism of grain growth was analyzed and discussed. It is suggested that a kind of highly reactive MgO is produced during the thermal decomposition of magnesites, which is exactly the reason why the activation energy of the grain growth during the thermal decomposition of magnesite is lower than that of bulk diffusion or surface diffusion.

Ta 함량에 따른 Ti-xTa 합금의 부식특성 (Corrosion Characteristics of Ti-xTa Alloys with Ta contents)

  • 김현주;최한철
    • Corrosion Science and Technology
    • /
    • 제12권1호
    • /
    • pp.50-55
    • /
    • 2013
  • The purpose of this study was to investigate corrosion characteristics of Ti-xTa alloys with Ta contents. Ti-xTa alloys used as samples (x=30, 40%) were arc-melted under argon atmosphere of 99.9% purity. Ti-xTa alloys were homogenized for 12hr at $1000^{\circ}C$ and then water quenched. The surface characteristics of Ti-xTa alloys were investigated using optical microscopy (OM) and X-ray diffractometer (XRD). The anodic corrosion behaviors of the specimens were examined through potentiodynamic, potentiostatic and galvanostatic test in 0.9 % NaCl solution at $36.5{\pm}1^{\circ}C$. After corrosion test, the surface characteristics of Ti-xTa alloys were investigated using OM. The microstructure of Ti-Ta alloy showed the beta structure with Ta content. The corrosion resistance of Ti alloy was improved by increasing Ta content and the corrosion morphology of Ti-Ta alloy showed that the site attacked by chloride ion decreased from the active to passive region with Ta content. Potential of Ti-40Ta alloy increased as time increased, whereas, current density of Ti-40Ta alloy decreased as time increased compared to Ti-30 alloy.

冷間壓廷鋼板의 Aluminizing에 對한 速度論的인 硏究 (A Study on the kinetics of Aluminizing of Cold rolled Steel Sheets)

  • 윤병하;김영기
    • 한국표면공학회지
    • /
    • 제12권2호
    • /
    • pp.75-83
    • /
    • 1979
  • The Rates of formation and heats of activation for the intermatallic Compound Layers between Cold rolled sheet and molten aluminium &ath (adding small amounts of silicon) has been determined by Continous aluminizing method in the temperature range of 680$^{\circ}$ to 760$^{\circ}C$ and with immerssion time. The structure of the intermetallic Compound Layers was the shape of "Tongues" in pure Al-Bath and Al-Bath Containing 1% Si, But in Al-5% Si Bath was "Band" the Composition of the intermetallic Compound Layers were checked by microhardness measurements and X-Ray probe micro analyzer. FeAl intermetallic Compound layer was found to be uniform in pure Al-Bath and Al-5% Si Bath, But Fe Al intermetallic Compound Layer was shown in Al-1% Si Bath. The growth Rates of the intermetallic Compound Layers was most rapidly increased at Temperatures from 720$^{\circ}$ to 760$^{\circ}C$, at the immorsion time above 60 Second in pure Al-Bath, But in Al-1% Si Bath was solwly increased for the same conditions, and then in Al-5% Si Bath was hardly effected by these experimental condition. Heasts of activation of 29, 46 Kcal per mole which calculuted from Layer growth experiments were found in pure Al-Bath, Al-1% Si Bath respectively.

  • PDF

The Effects of a Bridging Exercise Applying Changes in the Base of Support for the Shoulders on Trunk Muscle Activation

  • Lee, Tae-Gyu;Park, Chan-Hyun;Son, Ho-Hee
    • 대한물리의학회지
    • /
    • 제11권3호
    • /
    • pp.97-104
    • /
    • 2016
  • PURPOSE: Bridge exercise is widely used in rehabilitation exercise for trunk stabilization through various applications in clinical practice. However, there is a lack of studies changing the base of support for the shoulders. The purpose of this study is to investigate the changes in the base of support for the shoulders of trunk muscle activation during bridge exercise. METHODS: 20 healthy subjects (10 men, 10 women) in their twenties were participated in this study. They performed 5 bridge exercises (bridge exercise with their shoulders on a stable table (1/2 knee height, knee height), and on a sling (1/2 knee height, knee height), conventional bridge exercise. The surface electromyography were used for rectus abdominis (RA), internal oblique (IO), external oblique (EO), and erector spinae (ES). RESULTS: During bridge exercise that their shoulders on the sling of 1/2 knee height, the RA, EO, IO muscle activities were significant increased. And during bridge exercise that their shoulders on the stable surface of knee height, the IO/RA ratio were higher than other positions but there were no significant difference between positions for EO/RA, IO/RA ratio. CONCLUSION: Based on this result, using various bases of support and changing the height of bridging exercise may be used to provide effective trunk stabilization exercises.

이산화탄소를 이용한 등방성 탄소섬유의 활성화과정 중 발생하는 구조변화(II)-TEM을 이용한 분석 (Microstructural Changes during Activation Process of Isotopic Carbon Fibers using CO2 Gas(II)-TEM Study)

  • 노재승
    • 한국재료학회지
    • /
    • 제13권11호
    • /
    • pp.749-755
    • /
    • 2003
  • A development of micropores of $CO_2$activated isotropic carbon fibers from TEM was observed. It was observed that the micropores of activated carbon fibers(ACFs) were consisted of slit-shaped pores(SP) and cylinder-shaped pores(CP). The SPs were formed between two parallel-carbon layers, and the CPs were formed at a place which is connected polygonally by more than two carbon layers. It was shown that the CPs of the ACFs were developed at high degree of burn-offs and at high activation temperature. The pore size distribution of the best ACF, which was observed at a highest value of specific surface area(3,495 $\m^2$/g), showed a continuous distribution in the range of about $4∼l5\AA$, and the median pore size was 6.7$\AA$. The super-high specific surface area of ACFs was found to be due to that the SPs were connected with a maximum size of 7∼8$\AA$ continuously, It is possible that the SPs should be formed in the ACFs in order to show super-high SSA.

Preparation of novolac-type phenol-based activated carbon with a hierarchical pore structure and its electric double-layer capacitor performance

  • Lee, Dayoung;Jung, Jin-Young;Park, Mi-Seon;Lee, Young-Seak
    • Carbon letters
    • /
    • 제15권3호
    • /
    • pp.192-197
    • /
    • 2014
  • A hierarchical pore structured novolac-type phenol based-activated carbon with micropores and mesopores was fabricated. Physical activation using a sacrificial silicon dioxide ($SiO_2$) template and chemical activation using potassium hydroxide (KOH) were employed to prepare these materials. The morphology of the well-developed pore structure was characterized using field-emission scanning electron microscopy. The novolac-type phenol-based activated carbon retained hierarchical pores (micropores and mesopores); it exhibited high Brunauer-Emmett-Teller specific surface areas and hierarchical pore size distributions. The hierarchical pore novolac-type phenol-based activated carbon was used as an electrode in electric double-layer capacitors, and the specific capacitance and the retained capacitance ratio were measured. The specific capacitances and the retained capacitance ratio were enhanced, depending on the $SiO_2$ concentration in the material. This result is attributed to the hierarchical pore structure of the novolac-type phenol-based activated carbon.

초음파 교반을 이용한 기억소자 Metallization용 무전해 Ni Plating (Electroless Ni Plating for Memory Device Metallization Using Ultrasonic Agitation)

  • 우찬희;우용하;박종완;이원해
    • 한국표면공학회지
    • /
    • 제27권2호
    • /
    • pp.109-117
    • /
    • 1994
  • Effect of ultrasonic agitation on the contact properties was studied in Ni electroless plating and Pd activation. P-type Si bare wafers were used as substrate and DMAB was used as reducing agent due to its good electrical properties, solderability and compatibility to substrate. In activation, high density Pd nuclei of small size were formed during ultra-sonic agitation compared to that of no stirring. In electroless plating, the plating rate was enhanced by 30∼90% by using ultrasonic agitation. In elecrtoless plating, inhibitor is the most effective additives in ultrasonic agitation. In this experi-ment, thiourea was used as inhibitor. The less the amount of the inhibitor, the more ultrasonic agitation efficiency. It is confirmed by SEM that Ni-B films formed by ultrasonic were coarser, less porous, and denser than those of no stirring. In ultrasonic agitation, boron content of the films was more than those of no stirring. In this case, the more DMAB concentration, the higher the temperature, the less pH, the more boron content. Resistivity of the films formed by ultrasonic agitation was higher than that of no strirring. As the content of boron was increased, the resistivity of the films was increased exponentially.

  • PDF

Hydrogen Production Through Catalytic Dehydrogenation of Decalin over Pt/C Catalyst Using Activated Carbon Aerogel

  • Lee, Gihoon;Kang, Ji Yeon;Jeong, Yeojin;Jung, Ji Chul
    • 한국재료학회지
    • /
    • 제25권4호
    • /
    • pp.191-195
    • /
    • 2015
  • To improve its textural properties as a support for platinum catalyst, carbon aerogel was chemically activated with KOH as a chemical agent. Carbon-supported platinum catalyst was subsequently prepared using the prepared carbon supports(carbon aerogel(CA), activated carbon aerogel(ACA), and commercial activated carbon(AC)) by an incipient wetness impregnation. The prepared carbon-supported platinum catalysts were applied to decalin dehydrogenation for hydrogen production. Both initial hydrogen evolution rate and total hydrogen evolution amount were increased in the order of Pt/CA < Pt/AC < Pt/ACA. This means that the chemical activation process served to improve the catalytic activity of carbon-supported platinum catalyst in this reaction. The high surface area and the well-developed mesoporous structure of activated carbon aerogel obtained from the activation process facilitated the high dispersion of platinum in the Pt/ACA catalyst. Therefore, it is concluded that the enhanced catalytic activity of Pt/ACA catalyst in decalin dehydrogenation was due to the high platinum surface area that originated from the high dispersion of platinum.