• Title/Summary/Keyword: surface activation

Search Result 1,420, Processing Time 0.143 seconds

Hydrogen Storage Behaviors of Multi-walled Carbon Nanotubes Modified by Physical Activation Process (기상활성화 표면처리된 다중벽 탄소나노튜브의 수소저장거동)

  • Park, Soo-Jin;Lee, Seul-Yi;Kim, Byung-Joo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.765-768
    • /
    • 2009
  • In this work, we prepared the activated multi-walled carbon nanotubes (Acti-MWNTs) with well developed physical surface structures, high specific surface area, and higher adsorption capacity by a physical activation process, in order to enhance the hydrogen storage capacity. The Acti-MWNTs' changes in the crystalline phase and in their lattice distortions were characterized by X-ray diffraction (XRD). The textural properties of the Acti-MWNTs were investigated by a nitrogen adsorption isotherms by Brunauer-Emmett-Teller (BET) equation and Harvath-Kawazoe (H-K) calculation, respectively. The hydrogen storage capacity of the Acti-MWNTs was investigated by BEL-HP at 298 K/100 bar. The hydrogen storage capacity of the Acti-MWNTs was improved with the physical activation, resulted from the formation of new hydrogen-favorable sites on the Acti-MWNT surfaces. In conclusion, the physical activation was one of the effective method to enhance the hydrogen storage capacity of the MWNTs.

  • PDF

Preparation and Characterization of OXI-PAN Based Carbon Fibers Activated by Hydroxides (수산화물에 의해 활성화된 OXI-PAN계 섬유의 제조 및 특성)

  • Moon, Sook-Young;Han, Dong-Yun;Lee, Byung-Ha;Lim, Yun-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.7 s.278
    • /
    • pp.469-474
    • /
    • 2005
  • Activated Carbon Fibers (ACFs) are widely used as adsorbents in technologies related to pollution abatement due to their highly porous structure and large adsorption capacity. The porous structure and surface area of ACFs depends strongly on both the activation processes arid the nature .of the precursors. The chemical activation with hydroxides has recently been, of great interest as it permits the preparation of activated carbon fibers with highly developed porosity. In this work, OXI-PAN fiber used as precursor for the preparation of activated carbon fibers by chemical activation with KOH and NaOH. The affects of several activation conditions on the surface properties, pore size distribution and adsorption capacity of Ag ion and Iodine ion on ACFs studied.

The Effects of MgO Activation Process on the Discharge Characteristics of AC PDP (AC PDP 의 방전 특성에 미치는 MgO 활성화 영향에 관한 연구)

  • Kim, Young-Kee;Kim, Jun-Ho;Sohn, Je-Bong;Park, Byeong-Eon;Park, Myung-Joo;Cho, Jung-Soo;Park, Chung-Hoo
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.3
    • /
    • pp.209-214
    • /
    • 1999
  • This paper deals with the effects of activation process of MgO thin film on the dielectric characteristics of surface discharge type AC PDP. The discharge voltage decreased with increase in the MgO activation time and temperature until $400^{\circ}C$ under the condition of clean high vacuum. However, for the sample activated above $430^{\circ}C$ the discharge voltage increased. These results may be explained by the MgO morphology change and surface cleaning in the process of activation.

  • PDF

Manufacture of Activated Carbon based on Solid Residue after Lignin Pyrolysis (리그닌 열분해 잔류고형물을 원료로 한 활성탄의 제조)

  • Lee, Jong-Jib;Yoon, Sung-Wook;Lee, Byung-Hak
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.1
    • /
    • pp.133-139
    • /
    • 2000
  • In this study, activated carbon was prepared from solid residue after lignin pyrolysis by using zinc chloride as an activation agent. The steam activation method was adopted to manufacture activated carbon from solid residue after lignin pyrolysis. The effect of process operation variables such as activation temperature, activation time and mass of activation agent added to char on the pore structure and specific surface area of the activated carbon was investigated. Activated carbon with high surface area and well-developed pore structure could be prepared, when solid residue after lignin pyrolysis was mixed with zinc chloride of 300 wt% and then the mixture was activated for 1 hour at $1000^{\circ}C$ in a stream of nitrogen.

  • PDF

Nanotube Morphology Control of Ti-30Nb-xTa Alloys by Applied Voltages

  • Kim, Eun-Sil;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2013.05a
    • /
    • pp.78-78
    • /
    • 2013
  • This study has investigated the nanotube morphology control of Ti-30Nb-xTa alloys by applied voltages. The morphology changed from small diameter to large diameter with increasing applied voltage, whereas, changed from large diameter to small diameter with decreasing applied voltage.

  • PDF

Effects of TiN and ZrN Coating on Surface Characteristics of Orthodontic Wire (교정용 와이어의 표면특성에 미치는 TiN 및 ZrN 코팅영향)

  • Kim, W.G.;Kim, D.Y.;Choe, H.C.
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.4
    • /
    • pp.147-155
    • /
    • 2008
  • The dental orthodontic wire provides a good combination of strength, corrosion resistance and moderate cost. The purpose of this study was to investigate the effects of TiN and ZrN coating on corrosion resistance and physical property of orthodontic wire using various instruments. Wires(round type and rectangular type) were used, respectively, for experiment. Ion plating was carried out for wire using Ti and Zr coating materials with nitrogen gas. Ion plated surface of each specimen was observed with field emission scanning electron microscopy(FE-SEM), energy dispersive X-ray spectroscopy(EDS), atomic force microscopy(AFM), vickers hardness tester, and electrochemical tester. The surface of TiN and ZrN coated wire was more smooth than that of other kinds of non-coated wire. TiN and ZrN coated surface showed higher hardness than that of non-coated surface. The corrosion potential of the TiN coated wire was comparatively high. The current density of TiN coated wire was smaller than that of non-coated wire in 0.9% NaCl solution. Pit nucleated at scratch of wire. The pitting corrosion resistance $|E_{pit}-E_{rep}|$ increased in the order of ZrN coated(300 mV), TiN coated(120 mV) and non-coated wire(0 mV).

Surface Compatibility and Electrochemical Behaviors of Zirconia Abutment for Prosthodontics (보철용 지르코니아 어버트먼트의 표면적합도와 전기화학적 거동)

  • Park, K.H.;Jeong, Y.H.;Kim, W.G.;Choe, H.C.;Kim, M.S.
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.1
    • /
    • pp.41-46
    • /
    • 2009
  • The fit between dental implant fixture and zirconia abutment is affected by many variables during the fabrication process by CAD/CAM program and milling working. The purpose of this study was to evaluate the surface compatibility and electrochemical behaviors of zirconia abutment for prosthodontics. Zirconia abutments were prepared and fabricated using zirconia block and milling machine. For stabilization of zirconia abutments, sintering was carried out at $1500^{\circ}F$ for 7 hrs. The specimens were cut and polished for gap observation. The gap between dental implant fixture and zirconia abutment was observed using field-emission scanning electron microscopy (FE-SEM). The hardness and corrosion resistance of zirconia abutments were observed with vickers hardness tester and potentiostat. The gap between dental implant fixture and zirconia abutment was $5{\sim}12{\mu}m$ for small gap, and $40{\sim}60{\mu}m$ for large gap. The hardness of zirconia surface was 1275.5 Hv and showed micro-machined scratch on the surface. The corrosion potentials of zirconia abutment/fixture was .290 mV and metal abutment/fixture was .280 mV, whereas $|E_{pit}-E_{corr}|$ of zirconia abutment/fixture (172 mV) was higher than that of metal abutment/fixture (150 mV). The corrosion morphology of metal abutment/fixture showed the many pit on the surface in compared with zirconia abutment/fixture.

Biocompatibility and Surface Characteristics of PEO-treated Ti-40Ta-xZr Alloys for Dental Implant Materials

  • Yu, Ji-Min;Cho, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.23-23
    • /
    • 2018
  • In this study, new titanium alloys were prepared by adding elements such as tantalum (Ta), zirconium (Zr) and the like to complement the biological, chemical and mechanical properties of titanium alloys. The Ti-40Ta-xZr ternary alloy was formed on the basis of Ti-40Ta alloy with the contents of Zr in the contents of 0, 3, 7 and 15 wt. %. Plasma electrolytic oxidation (PEO), which combines high-voltage sparks and electrochemical oxidation, is a novel method to form ceramic coatings on light metals such as Ti and its alloys. These oxide film produced by the electrochemical surface treatment is a thick and uniform porous form. It is also composed of hydroxyapatite and calcium phosphate-based phases, so it has the characteristics of bone inorganic, non-toxic and very high bioactivity and biocompatibility. Ti-40Ta-xZr alloys were homogenized in an Ar atmosphere at $1050^{\circ}C$ for 1 hour and then quenched in ice water. The electrochemical oxide film was applied by using a power supply of 280 V for 3 minutes in 0.15 M calcium acetate monohydrate ($Ca(CH_3COO)_2{\cdot}H_2O$) and 0.02 M calcium glycerophosphate ($C_3H_7CaO_6P$) electrolyte. A small amount of 0.0075M zinc acetate and magnesium acetate were added to the electrolyte to enhance the bioactivity. The mechanical properties of the coated surface of Ti-40Ta-xZr alloys were evaluated by Vickers hardness, roughness test, and elastic modulus using nano-indentation, and the surface wettability was evaluated by measuring the contact angle of the coated surface. In addition, cell activation and differentiation were examined by cell culture of HEK 293 (Human embryonic kidney 293) cell proliferation. Surface properties of the alloys were analyzed by scanning electron microscopy(FE-SEM), EDS, and X-ray diffraction analysis (XRD).

  • PDF

Effects of TiN/Ti Multilayer Coating on the Ti-30Ta-xZr Alloy Surface (Ti-30Ta-xZr 합금의 표면에 TiN/Ti 다층막코팅효과)

  • Kim, Y.U.;Jeong, Y.H.;Cho, J.Y.;Choe, H.C.;Vang, M.S.
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.4
    • /
    • pp.161-168
    • /
    • 2009
  • Effects of TiN/Ti multilayer coating on the Ti-30Ta-xZr alloy surface were studied by using various experiments. The Ti-30Ta containing Zr (5, 10 and 15 wt%) were melted 10 times to improve chemical homogeneity by using a vacuum furnace. And then samples were homogenized for 24 hrs at $1000^{\circ}C$. The specimens were prepared for TiN/Ti coating by cutting and polishing. The prepared specimens were coated with TiN/Ti multilayers by using DC magnetron sputtering method. The analyses of coated surface and coated layer were carried out by field emission scanning electron microscope(FE-SEM), EDX, and X-ray diffractometer(XRD). From the microstructure and XRD analysis of Ti-30Ta-xZr alloys, The equiaxed structure was changed to needle-like structure with increasing Zr content. And $\alpha$-peak and elastic modulus increased as Zr content increased. The $\alpha$ and $\beta$ phase predominantly were found in the specimen containing high Zr content. According to the analysis of TiN/Ti coating layer, the surface defects and structures of Ti-30Ta-xZr were covered with TiN/Ti coating layer and surface roughness decreased.