• Title/Summary/Keyword: surface accuracy

Search Result 2,616, Processing Time 0.028 seconds

다이아몬드 공구를 사용한 선삭 가공에서의 표면 형상 예측

  • 윤영식;이상조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.04b
    • /
    • pp.102-107
    • /
    • 1993
  • The achievable machining accuracy depends upon the level of the micro-engineering, and the dimensional tolerances in the order of 10nm and surface roughness in the order of 1nm are the accuracytargets to be achieved today. Suchrequirements cannot be satisfiedby the conventional machining processes. Single point diamond turning is one of the new techniques which can produce the parts with such accuracy limits. The aims of this thesis are to get a better understanding of the complex cutting process with a diamond tool and, consequently, to develope a predicting modelof a turned surface profile. In order to predict the turned surface profile, a numerical model has been developed. By means of this model, the influences of the cutting conditions, the material properties of the workpiece, the geometry of the cutting tool and the dynamic behaviour of the lathe and their influences via the cutting forces upon the surface roughness have been estimated.

Effect of TiN-Coating on a Punch on Surface Quality of a Cold Forging Automotive Bearing Shaft (냉간 단조용 펀치의 TiN 코팅처리에 따른 자동차 베어링축의 표면 영향에 관한 연구)

  • Kim H.J.;Lee S.W.;Kang S.M.;Joun B.Y.;Joun M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.143-147
    • /
    • 2004
  • In this paper, effect of TiN-coating on product quality such as dimensional accuracy and surface roughness is experimentally investigated. A punch of SKD11 material in cold forging of an automotive bearing shaft and its related process found in a cold forging company ate selected as the test example. The effect of TiN-coating is revealed in a quantitative manner. It is to be noted that TiN-coating is effective in controlling the dimensional accuracy and surface roughness as well as in increasing tool lift.

  • PDF

A Study on the Particle Embedding Phenomena on Machined Surface according to Cutting Fluid in End Milling (절삭유 필터링에 따른 엔드밀 가공면 입자 임베딩 현상에 관한 연구)

  • Kim, Jeon-Ha;Hong, Tae-Yong;Lee, Jong-Hwan;Kang, Myung-Chang;Kim, Jeong-Suk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.4 no.3
    • /
    • pp.39-44
    • /
    • 2005
  • With the development of high speed and accuracy machining, the micro-chips are formed in the machining process and broken particles are circulated with the cutting fluid. The surface roughness and accuracy of part are deteriorated because the metal particles included in the cutting fluid are embedded on machined surface. In this study, the influences of particles for the machined surface according to filtering degrees are evaluated and the embedding mechanism is suggested.

  • PDF

Structural reliability analysis using response surface method with improved genetic algorithm

  • Fang, Yongfeng;Tee, Kong Fah
    • Structural Engineering and Mechanics
    • /
    • v.62 no.2
    • /
    • pp.139-142
    • /
    • 2017
  • For the conventional computational methods for structural reliability analysis, the common limitations are long computational time, large number of iteration and low accuracy. Thus, a new novel method for structural reliability analysis has been proposed in this paper based on response surface method incorporated with an improved genetic algorithm. The genetic algorithm is first improved from the conventional genetic algorithm. Then, it is used to produce the response surface and the structural reliability is finally computed using the proposed method. The proposed method can be used to compute structural reliability easily whether the limit state function is explicit or implicit. It has been verified by two practical engineering cases that the algorithm is simple, robust, high accuracy and fast computation.

An Inspection System for Measuring Feeding Accuracy of Tape Feeders (테이프 피더의 부품공급 정밀도 측정을 위한 검사 시스템)

  • Jo, Tae-Hun;Lee, Seong-Jun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.7
    • /
    • pp.573-577
    • /
    • 2002
  • A tape feeder of a SMD(Surface Mount Device) mounter is a device that sequentially feeds electronic components on a tape reel to the pick-up system of the mounter. As components are getting much smaller, feeding accuracy of a feeder becomes one of the most important factors for successful component pick-up. Therefore, it is critical to keep the feeding accuracy to a specified level in the assembly and production of tape feeders. This paper describes a tape feeder inspection system that was developed to automatically measure and inspect feeding accuracy using machine vision. It consists of a feeder base, an image acquisition system, and a personal computer. The image acquisition system is composed of CCD cameras with lens, LED illumination systems, and a frame grabber inside the PC. This system loads up to six feeders at a time and inspects them automatically and sequentially. The inspection software was implemented using Visual C++on Windows NT with easily usable GUI. Using this system, we can automatically measure and inspect the quality of all feeders in production process by analyzing the measurement results statistically.

Development of 3D Measuring System for Artificial Pontic using Spherical Coordinate System Mechanism (구면좌표계식 기구를 이용한 인공치아의 3차원 측정시스템 개발)

  • Maeng, Hee-Young;Sung, Bong-Hyun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.4
    • /
    • pp.427-433
    • /
    • 2010
  • With recent increased demand for reverse engineering in dental machining, the 3D laser scanner is widely used for inspection of artificial pontic. In order to overcome the optical drawback of laser scanner, such as irregular scatter, direction of beam, and the influence of surface integrity, it is developed in this study a new 3D measuring system for artificial pontic using spherical coordinate system mechanism by point laser sensor, which keeps the direction of beam normal to surface consistently. The comprehensive integrated system is established to evaluate the improvement of accuracy with data acquisition system. The experimental results for measuring a master ball and pontic models shows the excellent form accuracy and repeatability compared with conventional apparatus. Also, these results shows the possibility to apply this system for the measuring purpose within 0.05mm accuracy of pontic at the sharp edge or margin contour, which was difficult to measure at the conventional systems.

A study for null lens design of autostigmatic type and the limitation of measurement accuracy for ultra precision manufacturing of large aspherical surface (대형 비구면의 초정밀 가공을 위한 자동무수차점 방식의 널 렌즈 설계 및 측정 정밀도의 한계에 관한 연구)

  • Kim, Kil-Seon;Rim, Cheon-Seog
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.1
    • /
    • pp.71-78
    • /
    • 2005
  • A null lens system of autostigmatic type, consisting of two mirrors, is designed for testing a large aspherical mirror. The system is theoretically analyzed to determine the limitation of measurement accuracy according to the manufacturing and alignment errors. We confirmed that irregularity of the null lens surface is the principal factor among tolerances in limiting measurement accuracy. Consequently, we can predict that measurement accuracy will be from 5λ/100 to 4λ/1000 according to the amount of this irregularity. That is, we can present the limitation of possible measurement accuracy with actual alignment and manufacturing errors.

Structural Analysis of High Precision Reflector Using Finite Element Analysis (유한요소해석법을 이용한 고정밀 반사경의 구조 해석)

  • Lee, Sang-Yong;Kim, Ghiseok;Kim, Geon-Hee;Lee, Young-Shin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.2
    • /
    • pp.154-159
    • /
    • 2013
  • In this paper, the effect of bolt clamping force and form accuray of contact surface between mirror and mount on mirror surface was studied. Normally, mirror used in reflecting optical system was assembled with mount by bolts or adhesive. In this case, the tension caused by bolt clamping force or adhesive force may distort the mirror surface. Also, form accuracy error of the contact surface have a negative impact on wrenched mirror surface which assembled by bolts or adhesive. In this study, stress and distorted displacements on mirror surface were analyzed according to the different contact surface form accuracies and bolt clamping forces by using the finite element analysis method.

Droplet Geometry and Its Volume Analysis (기름방울 형상 및 그 체적 분석법)

  • Yoon, Moon-Chul
    • Tribology and Lubricants
    • /
    • v.24 no.6
    • /
    • pp.320-325
    • /
    • 2008
  • The recent industrial application requires technical methods to get the cutting fluid droplet surfaces in particular from the viewpoint of topography and micro texture. To characterize the surface topography of droplet, the combination of the confocal laser scanning microscope (CLSM) and wavelet filtering is well suited for obtaining the droplet geometry encountered in tribological research. This technique indicates a better agreement in obtaining an appropriate droplet surface obtained by the CLSM over a detail range of surface accuracy (resolution: $2{\mu}m$). And the results allow an excellent accuracy in a measurement of a droplet surface. The combination of extended focal depth measurement configured and multi-scale wavelet filtering has proven that it can construct a droplet surface in a successive and accurate way. A multi-scale approach of wavelet filtering was developed based on the decomposition and reconstruction of droplet surface by 2D wavelet transform using db9 (a mother wavelet of daubechies). Also this technique can be extended to characterize the quantification of droplet properties and other field in a wide range of scales. Finally this method is verified to be a better droplet surface modeling in a micro scale arising in a mist machining.

Real-Time Prediction for Product Surface Roughness by Support Vector Regression (서포트벡터 회귀를 이용한 실시간 제품표면거칠기 예측)

  • Choi, Sujin;Lee, Dongju
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.3
    • /
    • pp.117-124
    • /
    • 2021
  • The development of IOT technology and artificial intelligence technology is promoting the smartization of manufacturing system. In this study, data extracted from acceleration sensor and current sensor were obtained through experiments in the cutting process of SKD11, which is widely used as a material for special mold steel, and the amount of tool wear and product surface roughness were measured. SVR (Support Vector Regression) is applied to predict the roughness of the product surface in real time using the obtained data. SVR, a machine learning technique, is widely used for linear and non-linear prediction using the concept of kernel. In particular, by applying GSVQR (Generalized Support Vector Quantile Regression), overestimation, underestimation, and neutral estimation of product surface roughness are performed and compared. Furthermore, surface roughness is predicted using the linear kernel and the RBF kernel. In terms of accuracy, the results of the RBF kernel are better than those of the linear kernel. Since it is difficult to predict the amount of tool wear in real time, the product surface roughness is predicted with acceleration and current data excluding the amount of tool wear. In terms of accuracy, the results of excluding the amount of tool wear were not significantly different from those including the amount of tool wear.