• Title/Summary/Keyword: supramolecular electrolyte

Search Result 6, Processing Time 0.021 seconds

Solid-state Supramolecular polymer electrolytes containing double hydrogen bonding sites for high efficiency dye-sensitized solar cells(DSSCs) (초분자 고체전해질을 이용한 고효율 염료감응형 태양전지)

  • Kim, Sun-Young;Jeon, La-Sun;Lee, Yong-Gun;Kang, Yong-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.309-311
    • /
    • 2007
  • Supramolecules containing double hydrogen bonding sites at their both chain ends were self-polymerized to become solid state polymer and were utilized to improve the efficiency of solid state DSSCs. Hydrogen bonding sites were attached at the chain ends of PEG of Mw=2000, such as pyrimethamine and glutaric acid. The solar cell with the solid state supramolecular polymer electrolyte resulted in the overall energy conversion efficiency of 4.63 % with a short circuit current density $(J_{sc})$ of 10.41 $mAcm^{-2}$, an open circuit voltage $V_{oc}$, of 0.71 V and a fill factor (FF) of 0.62 at one sun condition ([oligomer]:[1-methyl-3-propyl imidazolium iodide (MPII)]:$[I_2]$ = 20 : 1 : 0.19, active area = 0.16 $cm^2$, $TiO_2$ layer thickness = 10 ${\mu}m$). The ionic conductivity of the sol id state electrolyte was $5.11{\times}10^{-4}$ (S/cm). The cell performance was characterized by electrochemical impedance spectroscopy and ionic conductivity.

  • PDF

Design of Supramolecular Electrolytes for Solid State Dye-sensitized Solar Cells (고체형 염료감응 태양전지용 초분자 전해질 개발)

  • Koh, Jong-Kwan;Koh, Joo-Hwan;Seo, Jin-Ah;Kim, Jong-Hak
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.24-27
    • /
    • 2009
  • Solid-state dye-sensitized solar cells (DSSCs) have been constructed employing supramolecular electrolytes with multiple hydrogen bonding. A supramolecule was facilely synthesized by one-pot reaction between the amines of methyl isocytosine (MIC) and the epoxy groups of poly(ethylene glycol diglycidyl ether) (PEGDGE) to produce quadruple hydrogen bonding units. Hydrogen bonding interactions and dissolution behavior of salt in supramolecular electrolytes are investigated. The ionic conductivity of the supramolecular electrolytes with ionic liquid, i.e. 1-methyl-3-propylimidazolium iodide (MPII) reaches $8.5{\times}10^{-5}$ S/cm at room temperature, which is higher than that with metal salt (KI). A worm-like morphology is observed in the FE-SEM micrographs of $TiO_2$ nanoporous layer, due to the connection of $TiO_2$ nanoparticles resulting from adequate coating by electrolytes. DSSCs employing the supramolecular electrolytes with MPII and KI exhibit an energy conversion efficiency of 2.5 % and 0.5 %, respectively, at 100 $mW/cm^2$, indicating the importance of the cation of salt. Solar cell performances were further improved up to 3.7 % upon introduction of poly(ethylene glycol dimethyl ether) (PEGDME) with 500 g/mol.

  • PDF

Electron-transfer Properties of Viologen Self-assembled MonoLayers in Different Electrolyte Solutions (전해질 변화에 따른 Viologen 자기조립박막의 전하이동 특성 연구)

  • Lee, D.Y.;Park, S.H.;Shin, H.K.;Park, J.C.;Chang, J.S.;Kwon, Y.S.
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.12
    • /
    • pp.1337-1340
    • /
    • 2004
  • The self-assembled monolayers of alkane derivatives with sulfur containing head groups on gold substrates have been widely examined recently, since the binding between S atoms and Au surface is strong. The viologen has been widely investigated their well-behaved electrochemistry including electron transfer mediation, the surface-enhanced of the adsorption and the behavior of supramolecular assemblies at electrode surfaces in theses and various studies. Yiologen monolayers are formed onto QCM by self-assembly method. We studied the relationship of electron transfer from changing the anions in 0.1 M NaCl and NaClO$_4$ electrolyte solution. The EQCM measurements revealed the anions transfer during reduction and oxidation, respectively From the EQCM data, the well-defined shape peaks were nearly equal charges by cyclic voltammetry.

Preparation of nano composite metal-oxide electrode and its application for superrcapacitor (나노복합산화물 전극의 제조 및 수퍼커패시터로써의 응용)

  • Kim, Hong-Il;Lee, Ju-Won;Kim, Sang-Gil;Yuk, Gyung-Chang;Park, Soo-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.801-804
    • /
    • 2002
  • Electrochemical capacitors are becoming attractive energy storage systems particularly for applications involving high power requirements such as hybrid systems consisting of batteries and electrochemical capacitors for electric vehicle propulsion. Both of amorphous cobalt oxide and manganese dioxide were prepared by sol-gel process reported in our previous work. Nanostructured supramolecular oligomer of 1,5-diaminoanthraquinone(DAAQ) coated metal oxides were successfully prepared by electrochemical oxidation from an acidic non-aqueous medium. We established process parameters of the technique for the formation of nano-structured materials. Furthermore, improved the capacitive properties of the nano structured metal oxide electrodes using controlled solution chemistry. $CoO_2$ and $MnO_2$-based composite electrode showed relatively good electrochemical behaviors in acidic electrolyte system with respect to specific capacity and scan rate dependency.

  • PDF

Electrochemical Characteristics of supercapacitor using organic-inorganic electrode (유-무기 복합전극을 이용한 수퍼커패시터의 전기화학적 특성)

  • Kim, Hong-Il;Kim, Sang-Gil;Yuk, Gyung-Chang;Park, Soo-Gil
    • Proceedings of the KIEE Conference
    • /
    • 2002.11a
    • /
    • pp.164-166
    • /
    • 2002
  • Over the past two decades, the electrochemical supercapaictors are receiving growing attention due to their possible applications as power backup in electronic equipment and electrical vehicles. Both of amorphous cobalt oxide and manganese dioxide were prepared by sol-gel process reported in our previous work. Nano-structured supramolecular oligomer of 1,5-diamino anthraquinone(DAAQ) coated metal oxides were successfully prepared by electrochemical oxidation from an acidic non-aqueous medium. We established process parameters of the technique for the formation of nano-structured materials. Furthermore, improved the capacitive properties of the nano structured metal oxide electrodes using controlled solution chemistry. $CoO_2$ and $MnO_2$-based composite electrode showed relatively good electrochemical behaviors in acidic electrolyte system with respect to specific capacity and scan rate dependency

  • PDF

Synthesis of CNFs(Carbon Nanofibers)/DAAQ electrode for Supercapacitor (슈퍼커패시티용 DAAQ/CNFs 전극의 제조)

  • Lee, Tae-Soo;Lee, Yun-Hee;Choi, Weon-Kyung;Park, Soo-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.1220-1223
    • /
    • 2003
  • A new type electric double layer capacitor (EDLC) was constructed by using carbon nanofibers (CNFs) and DAAQ(1,5-diaminoanthraquinone) electrode. Carbonaceous materials are found in variety forms such as graphite, diamond, carbon fibers etc. While all the carbon nanofibers include impurities such as amorphous carbon, nanoparticles, catalytic metals and incompletely grown carbons. We have eliminated of Ni particles and some carbonaceous particles in nitric acid. Nitric acid treated CNFs could be covered with very thin DAAQ oligomer from the results of CV and TG analyses and SEM images. A crystalline supramolecular oligomer of 1,5-diaminoanthraquinone(DAAQ) was successfully prepared as a thin film by electrochemical oxidation from an acidic non-aqueous medium. DAAQ oligomer film exhibited a specific capacity as 45-50 Ah/kg in 4M $H_2SO_4$. Its electrochemical characteristics were investigated by cyclic voltammetry. And compared with different electrolyte of aqueous type. During ultrasonic irradiation CNFs was to disperse in 0.1M $H_2SO_4$. As a result, CNFs coated by DAAQ composite electrode showed relatively good electrochemical behaviors.

  • PDF