• Title/Summary/Keyword: support vector regression.

Search Result 554, Processing Time 0.03 seconds

Machine Learning-based Production and Sales Profit Prediction Using Agricultural Public Big Data (농업 공공 빅데이터를 이용한 머신러닝 기반 생산량 및 판매 수익금 예측)

  • Lee, Hyunjo;Kim, Yong-Ki;Koo, Hyun Jung;Chae, Cheol-Joo
    • Smart Media Journal
    • /
    • v.11 no.4
    • /
    • pp.19-29
    • /
    • 2022
  • Recently, with the development of IoT technology, the number of farms using smart farms is increasing. Smart farms monitor the environment and optimise internal environment automatically to improve crop yield and quality. For optimized crop cultivation, researches on predict crop productivity are actively studied, by using collected agricultural digital data. However, most of the existing studies are based on statistical models based on existing statistical data, and thus there is a problem with low prediction accuracy. In this paper, we use various predition models for predicting the production and sales profits, and compare the performance results through models by using the agricultural digital data collected in the facility horticultural smart farm. The models that compared the performance are multiple linear regression, support vector machine, artificial neural network, recurrent neural network, LSTM, and ConvLSTM. As a result of performance comparison, ConvLSTM showed the best performance in R2 value and RMSE value.

IoT Enabled Intelligent System for Radiation Monitoring and Warning Approach using Machine Learning

  • Muhammad Saifullah ;Imran Sarwar Bajwa;Muhammad Ibrahim;Mutyyba Asgher
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.5
    • /
    • pp.135-147
    • /
    • 2023
  • Internet of things has revolutionaries every field of life due to the use of artificial intelligence within Machine Learning. It is successfully being used for the study of Radiation monitoring, prediction of Ultraviolet and Electromagnetic rays. However, there is no particular system available that can monitor and detect waves. Therefore, the present study designed in which IOT enables intelligence system based on machine learning was developed for the prediction of the radiation and their effects of human beings. Moreover, a sensor based system was installed in order to detect harmful radiation present in the environment and this system has the ability to alert the humans within the range of danger zone with a buzz, so that humans can move to a safer place. Along with this automatic sensor system; a self-created dataset was also created in which sensor values were recorded. Furthermore, in order to study the outcomes of the effect of these rays researchers used Support Vector Machine, Gaussian Naïve Bayes, Decision Trees, Extra Trees, Bagging Classifier, Random Forests, Logistic Regression and Adaptive Boosting Classifier were used. To sum up the whole discussion it is stated the results give high accuracy and prove that the proposed system is reliable and accurate for the detection and monitoring of waves. Furthermore, for the prediction of outcome, Adaptive Boosting Classifier has shown the best accuracy of 81.77% as compared with other classifiers.

Ensemble Design of Machine Learning Technigues: Experimental Verification by Prediction of Drifter Trajectory (앙상블을 이용한 기계학습 기법의 설계: 뜰개 이동경로 예측을 통한 실험적 검증)

  • Lee, Chan-Jae;Kim, Yong-Hyuk
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.3
    • /
    • pp.57-67
    • /
    • 2018
  • The ensemble is a unified approach used for getting better performance by using multiple algorithms in machine learning. In this paper, we introduce boosting and bagging, which have been widely used in ensemble techniques, and design a method using support vector regression, radial basis function network, Gaussian process, and multilayer perceptron. In addition, our experiment was performed by adding a recurrent neural network and MOHID numerical model. The drifter data used for our experimental verification consist of 683 observations in seven regions. The performance of our ensemble technique is verified by comparison with four algorithms each. As verification, mean absolute error was adapted. The presented methods are based on ensemble models using bagging, boosting, and machine learning. The error rate was calculated by assigning the equal weight value and different weight value to each unit model in ensemble. The ensemble model using machine learning showed 61.7% improvement compared to the average of four machine learning technique.

Effective Drought Prediction Based on Machine Learning (머신러닝 기반 효과적인 가뭄예측)

  • Kim, Kyosik;Yoo, Jae Hwan;Kim, Byunghyun;Han, Kun-Yeun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.326-326
    • /
    • 2021
  • 장기간에 걸쳐 넓은 지역에 대해 발생하는 가뭄을 예측하기위해 많은 학자들의 기술적, 학술적 시도가 있어왔다. 본 연구에서는 복잡한 시계열을 가진 가뭄을 전망하는 방법 중 시나리오에 기반을 둔 가뭄전망 방법과 실시간으로 가뭄을 예측하는 비시나리오 기반의 방법 등을 이용하여 미래 가뭄전망을 실시했다. 시나리오에 기반을 둔 가뭄전망 방법으로는, 3개월 GCM(General Circulation Model) 예측 결과를 바탕으로 2009년도 PDSI(Palmer Drought Severity Index) 가뭄지수를 산정하여 가뭄심도에 대한 단기예측을 실시하였다. 또, 통계학적 방법과 물리적 모델(Physical model)에 기반을 둔 확정론적 수치해석 방법을 이용하여 비시나리오 기반 가뭄을 예측했다. 기존 가뭄을 통계학적 방법으로 예측하기 위해서 시도된 대표적인 방법으로 ARIMA(Autoregressive Integrated Moving Average) 모델의 예측에 대한 한계를 극복하기위해 서포트 벡터 회귀(support vector regression, SVR)와 웨이블릿(wavelet neural network) 신경망을 이용해 SPI를 측정하였다. 최적모델구조는 RMSE(root mean square error), MAE(mean absolute error) 및 R(correlation Coefficient)를 통해 선정하였고, 1-6개월의 선행예보 시간을 갖고 가뭄을 전망하였다. 그리고 SPI를 이용하여, 마코프 연쇄(Markov chain) 및 대수선형모델(log-linear model)을 적용하여 SPI기반 가뭄예측의 정확도를 검증하였으며, 터키의 아나톨리아(Anatolia) 지역을 대상으로 뉴로퍼지모델(Neuro-Fuzzy)을 적용하여 1964-2006년 기간의 월평균 강수량과 SPI를 바탕으로 가뭄을 예측하였다. 가뭄 빈도와 패턴이 불규칙적으로 변하며 지역별 강수량의 양극화가 심화됨에 따라 가뭄예측의 정확도를 높여야 하는 요구가 커지고 있다. 본 연구에서는 복잡하고 비선형성으로 이루어진 가뭄 패턴을 기상학적 가뭄의 정도를 나타내는 표준강수증발지수(SPEI, Standardized Precipitation Evapotranspiration Index)인 월SPEI와 일SPEI를 기계학습모델에 적용하여 예측개선 모형을 개발하고자 한다.

  • PDF

Real-time fluvial sediment load monitoring method using H-ADCP and support vector regression (H-ADCP와 서포트벡터회귀를 이용한 실시간 하천 유사량 모니터링 방법)

  • Noh, Hyoseob;Son, GeunSoo;Kim, Dongsu;Park, Yong Sung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.25-25
    • /
    • 2022
  • 하천의 개발 및 보전 계획을 수립하는 데에 있어 자연하천의 부유사량 및 총유사량을 계측하는 것은 매우 중요하다. 우리나라에서는 매년 국내 자연하천을 대상으로 부유사량을 실측하고 실측 부유사량을 바탕으로 수정 아인슈타인 방법을 적용해 총유사량을 산정하고 있으나 이 또한 홍수기에 국한되어 있다. 가장 일반적인 유사량 계측 방법인 시료 채집에 의한 방법은 많은 노력과 비용을 수반하기 때문에 유사량 관측소와 관측 빈도를 늘릴 수 없는 실정이다. 최근에는 ADCP 음파 신호의 후방산란도가 부유사 농도에 따라 증가한다는 성질을 이용해 부유사 농도 계측에 ADCP를 이용하고자 하는 노력이 계속되고 있다. 이러한 특성을 이용해 본 연구에서는 전라남도 나주시에 위치한 남평교 자동유량관측소에 설치된 횡방향 ADCP (H-ADCP)를 대상으로 서포트 벡터 회귀(SVR)를 적용한 실시간 유사량 모니터링 모형을 제안하였다. 여기서 제시하는 유사량산정 모형은 크게 유량과 초음파 산란도를 입력 변수로 해 부유사 농도를 산정하는 서포트 벡터 회귀 모형과 첫 번째 모형으로부터 산정된 부유사 농도와 흐름 정보를 이용해 총유사량을 산정하는 모형으로 구성되어 있다. 개발된 SVR 부유사량 및 총유사량 산정 모형의 정확도가 결정계수(R2) 기준으로 각각 0.82, 0.90 으로 나타났다. 주목할 점은, 본 연구에서 제시하는 SVR 모형을 이용해 멱함수 기반 유사량 관계식으로는 예측할 수 없는 유사량의 이력현상을 재현해낼 수 있다는 것이다. 본 연구에서 제시하는 H-ADCP 기반 총유사량 모니터링 방법은 기존 자동 유량 관측소 시설을 그대로 이용할 수 있다는 장점이 있다. 따라서 실무 적용 시 낮은 추가비용으로 양질의 유사량 모니터링이 가능할 것으로 기대된다.

  • PDF

Automated Prioritization of Construction Project Requirements using Machine Learning and Fuzzy Logic System

  • Hassan, Fahad ul;Le, Tuyen;Le, Chau;Shrestha, K. Joseph
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.304-311
    • /
    • 2022
  • Construction inspection is a crucial stage that ensures that all contractual requirements of a construction project are verified. The construction inspection capabilities among state highway agencies have been greatly affected due to budget reduction. As a result, efficient inspection practices such as risk-based inspection are required to optimize the use of limited resources without compromising inspection quality. Automated prioritization of textual requirements according to their criticality would be extremely helpful since contractual requirements are typically presented in an unstructured natural language in voluminous text documents. The current study introduces a novel model for predicting the risk level of requirements using machine learning (ML) algorithms. The ML algorithms tested in this study included naïve Bayes, support vector machines, logistic regression, and random forest. The training data includes sequences of requirement texts which were labeled with risk levels (such as very low, low, medium, high, very high) using the fuzzy logic systems. The fuzzy model treats the three risk factors (severity, probability, detectability) as fuzzy input variables, and implements the fuzzy inference rules to determine the labels of requirements. The performance of the model was examined on labeled dataset created by fuzzy inference rules and three different membership functions. The developed requirement risk prediction model yielded a precision, recall, and f-score of 78.18%, 77.75%, and 75.82%, respectively. The proposed model is expected to provide construction inspectors with a means for the automated prioritization of voluminous requirements by their importance, thus help to maximize the effectiveness of inspection activities under resource constraints.

  • PDF

Performance Evaluation of Machine Learning Algorithms for Cloud Removal of Optical Imagery: A Case Study in Cropland (광학 영상의 구름 제거를 위한 기계학습 알고리즘의 예측 성능 평가: 농경지 사례 연구)

  • Soyeon Park;Geun-Ho Kwak;Ho-Yong Ahn;No-Wook Park
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.507-519
    • /
    • 2023
  • Multi-temporal optical images have been utilized for time-series monitoring of croplands. However, the presence of clouds imposes limitations on image availability, often requiring a cloud removal procedure. This study assesses the applicability of various machine learning algorithms for effective cloud removal in optical imagery. We conducted comparative experiments by focusing on two key variables that significantly influence the predictive performance of machine learning algorithms: (1) land-cover types of training data and (2) temporal variability of land-cover types. Three machine learning algorithms, including Gaussian process regression (GPR), support vector machine (SVM), and random forest (RF), were employed for the experiments using simulated cloudy images in paddy fields of Gunsan. GPR and SVM exhibited superior prediction accuracy when the training data had the same land-cover types as the cloud region, and GPR showed the best stability with respect to sampling fluctuations. In addition, RF was the least affected by the land-cover types and temporal variations of training data. These results indicate that GPR is recommended when the land-cover type and spectral characteristics of the training data are the same as those of the cloud region. On the other hand, RF should be applied when it is difficult to obtain training data with the same land-cover types as the cloud region. Therefore, the land-cover types in cloud areas should be taken into account for extracting informative training data along with selecting the optimal machine learning algorithm.

Research on a Non-invasive Blood Glucose level Estimation Algorithm based on Near- infrared Spectroscopy (근적외선 분광법 기반 비침습식 혈당 수치 추정 알고리즘 연구)

  • Young-Man Kang;Soon-Hee Han
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1353-1362
    • /
    • 2023
  • Various methods are being attempted to resolve the inconvenience of blood glucose meters used to check blood sugar levels. In this paper, we attempted to estimate blood sugar levels non-invasively using machine learning technology from spectral data acquired using a near-infrared sensor. The non-invasive blood glucose meter used in the study has a total of six near-infrared ray emitters, including visible rays, and a light receiver that receives them. It is a device created to collect spectral data on specific parts of the human body, such as the fingers. To verify whether there was a significant difference depending on blood sugar level, we attempted to estimate blood sugar level through machine learning algorithms. As a result of applying five machine learning algorithm techniques to the collected data and adjusting various hyper parameters, it was confirmed that the support vector regression algorithm showed the best performance.

Data-driven Model Prediction of Harmful Cyanobacterial Blooms in the Nakdong River in Response to Increased Temperatures Under Climate Change Scenarios (기후변화 시나리오의 기온상승에 따른 낙동강 남세균 발생 예측을 위한 데이터 기반 모델 시뮬레이션)

  • Gayeon Jang;Minkyoung Jo;Jayun Kim;Sangjun Kim;Himchan Park;Joonhong Park
    • Journal of Korean Society on Water Environment
    • /
    • v.40 no.3
    • /
    • pp.121-129
    • /
    • 2024
  • Harmful cyanobacterial blooms (HCBs) are caused by the rapid proliferation of cyanobacteria and are believed to be exacerbated by climate change. However, the extent to which HCBs will be stimulated in the future due to increased temperature remains uncertain. This study aims to predict the future occurrence of cyanobacteria in the Nakdong River, which has the highest incidence of HCBs in South Korea, based on temperature rise scenarios. Representative Concentration Pathways (RCPs) were used as the basis for these scenarios. Data-driven model simulations were conducted, and out of the four machine learning techniques tested (multiple linear regression, support vector regressor, decision tree, and random forest), the random forest model was selected for its relatively high prediction accuracy. The random forest model was used to predict the occurrence of cyanobacteria. The results of boxplot and time-series analyses showed that under the worst-case scenario (RCP8.5 (2100)), where temperature increases significantly, cyanobacterial abundance across all study areas was greatly stimulated. The study also found that the frequencies of HCB occurrences exceeding certain thresholds (100,000 and 1,000,000 cells/mL) increased under both the best-case scenario (RCP2.6 (2050)) and worst-case scenario (RCP8.5 (2100)). These findings suggest that the frequency of HCB occurrences surpassing a certain threshold level can serve as a useful diagnostic indicator of vulnerability to temperature increases caused by climate change. Additionally, this study highlights that water bodies currently susceptible to HCBs are likely to become even more vulnerable with climate change compared to those that are currently less susceptible.

An Ensemble Classification of Mental Health in Malaysia related to the Covid-19 Pandemic using Social Media Sentiment Analysis

  • Nur 'Aisyah Binti Zakaria Adli;Muneer Ahmad;Norjihan Abdul Ghani;Sri Devi Ravana;Azah Anir Norman
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.2
    • /
    • pp.370-396
    • /
    • 2024
  • COVID-19 was declared a pandemic by the World Health Organization (WHO) on 30 January 2020. The lifestyle of people all over the world has changed since. In most cases, the pandemic has appeared to create severe mental disorders, anxieties, and depression among people. Mostly, the researchers have been conducting surveys to identify the impacts of the pandemic on the mental health of people. Despite the better quality, tailored, and more specific data that can be generated by surveys,social media offers great insights into revealing the impact of the pandemic on mental health. Since people feel connected on social media, thus, this study aims to get the people's sentiments about the pandemic related to mental issues. Word Cloud was used to visualize and identify the most frequent keywords related to COVID-19 and mental health disorders. This study employs Majority Voting Ensemble (MVE) classification and individual classifiers such as Naïve Bayes (NB), Support Vector Machine (SVM), and Logistic Regression (LR) to classify the sentiment through tweets. The tweets were classified into either positive, neutral, or negative using the Valence Aware Dictionary or sEntiment Reasoner (VADER). Confusion matrix and classification reports bestow the precision, recall, and F1-score in identifying the best algorithm for classifying the sentiments.