• Title/Summary/Keyword: support vector regression.

Search Result 554, Processing Time 0.028 seconds

Indoor Environment Recognition of Mobile Robot Using SVR (SVR을 이용한 이동로봇의 실내환경 인식)

  • Shim, Jun-Hong;Choi, Jeong-Won
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.8
    • /
    • pp.119-125
    • /
    • 2010
  • This paper proposes a new solution about physical problem of autonomous mobile robots system using ultrasonic sensors. An mobile robot uses several sensors for recognition of its circumstance. However, such sensor data are not accurate all the time. A means of removing the noise that sensor data contains constantly, It is possible for simulation to estimate its circumstance based on ultrasonic sensor data by learning algorithm SVR(Support Vector Regression). To use SVR, it is being selected parameter and kernel which are the component of SVR. Selecting the component of SVR, the most accurate parameter data was selected through the tests because it is not existed determined data. In addition, choosing the kernel uses RBF(Radial Basis Function) kernel which is the most generalized. This paper proposes SVR based algorithm to compensate for the above demerits of ultrasonic sensor through the experimentation under three different environments.

Super Resolution by Learning Sparse-Neighbor Image Representation (Sparse-Neighbor 영상 표현 학습에 의한 초해상도)

  • Eum, Kyoung-Bae;Choi, Young-Hee;Lee, Jong-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.12
    • /
    • pp.2946-2952
    • /
    • 2014
  • Among the Example based Super Resolution(SR) techniques, Neighbor embedding(NE) has been inspired by manifold learning method, particularly locally linear embedding. However, the poor generalization of NE decreases the performance of such algorithm. The sizes of local training sets are always too small to improve the performance of NE. We propose the Learning Sparse-Neighbor Image Representation baesd on SVR having an excellent generalization ability to solve this problem. Given a low resolution image, we first use bicubic interpolation to synthesize its high resolution version. We extract the patches from this synthesized image and determine whether each patch corresponds to regions with high or low spatial frequencies. After the weight of each patch is obtained by our method, we used to learn separate SVR models. Finally, we update the pixel values using the previously learned SVRs. Through experimental results, we quantitatively and qualitatively confirm the improved results of the proposed algorithm when comparing with conventional interpolation methods and NE.

Effective Korean sentiment classification method using word2vec and ensemble classifier (Word2vec과 앙상블 분류기를 사용한 효율적 한국어 감성 분류 방안)

  • Park, Sung Soo;Lee, Kun Chang
    • Journal of Digital Contents Society
    • /
    • v.19 no.1
    • /
    • pp.133-140
    • /
    • 2018
  • Accurate sentiment classification is an important research topic in sentiment analysis. This study suggests an efficient classification method of Korean sentiment using word2vec and ensemble methods which have been recently studied variously. For the 200,000 Korean movie review texts, we generate a POS-based BOW feature and a feature using word2vec, and integrated features of two feature representation. We used a single classifier of Logistic Regression, Decision Tree, Naive Bayes, and Support Vector Machine and an ensemble classifier of Adaptive Boost, Bagging, Gradient Boosting, and Random Forest for sentiment classification. As a result of this study, the integrated feature representation composed of BOW feature including adjective and adverb and word2vec feature showed the highest sentiment classification accuracy. Empirical results show that SVM, a single classifier, has the highest performance but ensemble classifiers show similar or slightly lower performance than the single classifier.

A Differential Pricing Model for Industrial Land based on Locational Characteristics (입지특성을 고려한 토지가격의 차등적 산정방안 - 산업시설용지 공급가격을 중심으로 -)

  • Shim, Jae Heon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2D
    • /
    • pp.303-314
    • /
    • 2011
  • This paper proposes a differential pricing model for industrial land based on locational characteristics, using Support Vector Regression (SVR) as a land pricing methodology. The initial selling price of industrial land is set based on the total cost of site development that comprises the land acquisition cost and tax, land development expense, infrastructure installation cost, labor cost, migration expense, selling and administrative expense, capital cost, and so on. However, the current industrial land pricing method unreasonably applies the same price per square meter to all parcels within an industrial complex without considering differences in price depending on the location of each parcel. Therefore, this paper proposes an empirical land pricing model to solve this irrationality and verifies its validity and applicability.

Application of machine learning models for estimating house price (단독주택가격 추정을 위한 기계학습 모형의 응용)

  • Lee, Chang Ro;Park, Key Ho
    • Journal of the Korean Geographical Society
    • /
    • v.51 no.2
    • /
    • pp.219-233
    • /
    • 2016
  • In social science fields, statistical models are used almost exclusively for causal explanation, and explanatory modeling has been a mainstream until now. In contrast, predictive modeling has been rare in the fields. Hence, we focus on constructing the predictive non-parametric model, instead of the explanatory model. Gangnam-gu, Seoul was chosen as a study area and we collected single-family house sales data sold between 2011 and 2014. We applied non-parametric models proposed in machine learning area including generalized additive model(GAM), random forest, multivariate adaptive regression splines(MARS) and support vector machines(SVM). Models developed recently such as MARS and SVM were found to be superior in predictive power for house price estimation. Finally, spatial autocorrelation was accounted for in the non-parametric models additionally, and the result showed that their predictive power was enhanced further. We hope that this study will prompt methodology for property price estimation to be extended from traditional parametric models into non-parametric ones.

  • PDF

SVR model reconstruction for the reliability of FBG sensor network based on the CFRP impact monitoring

  • Zhang, Xiaoli;Liang, Dakai;Zeng, Jie;Lu, Jiyun
    • Smart Structures and Systems
    • /
    • v.14 no.2
    • /
    • pp.145-158
    • /
    • 2014
  • The objective of this study is to improve the survivability and reliability of the FBG sensor network in the structural health monitoring (SHM) system. Therefore, a model reconstruction soft computing recognition algorithm based on support vector regression (SVR) is proposed to achieve the high reliability of the FBG sensor network, and the grid search algorithm is used to optimize the parameters of SVR model. Furthermore, in order to demonstrate the effectiveness of the proposed model reconstruction algorithm, a SHM system based on an eight-point fiber Bragg grating (FBG) sensor network is designed to monitor the foreign-object low velocity impact of a CFRP composite plate. Simultaneously, some sensors data are neglected to simulate different kinds of FBG sensor network failure modes, the predicting results are compared with non-reconstruction for the same failure mode. The comparative results indicate that the performance of the model reconstruction recognition algorithm based on SVR has more excellence than that of non-reconstruction, and the model reconstruction algorithm almost keeps the consistent predicting accuracy when no sensor, one sensor and two sensors are invalid in the FBG sensor network, thus the reliability is improved when there are FBG sensors are invalid in the structural health monitoring system.

Bearing Faults Identification of an Induction Motor using Acoustic Emission Signals and Histogram Modeling (음향 방출 신호와 히스토그램 모델링을 이용한 유도전동기의 베어링 결함 검출)

  • Jang, Won-Chul;Seo, Jun-Sang;Kim, Jong-Myon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.11
    • /
    • pp.17-24
    • /
    • 2014
  • This paper proposes a fault detection method for low-speed rolling element bearings of an induction motor using acoustic emission signals and histogram modeling. The proposed method performs envelop modeling of the histogram of normalized fault signals. It then extracts and selects significant features of each fault using partial autocorrelation coefficients and distance evaluation technique, respectively. Finally, using the extracted features as inputs, the support vector regression (SVR) classifies bearing's inner, outer, and roller faults. To obtain optimal classification performance, we evaluate the proposed method with varying an adjustable parameter of the Gaussian radial basis function of SVR from 0.01 to 1.0 and the number of features from 2 to 150. Experimental results show that the proposed fault identification method using 0.64-0.65 of the adjustable parameter and 75 features achieves 91% in classification performance and outperforms conventional fault diagnosis methods as well.

Analysis of Dimensionality Reduction Methods Through Epileptic EEG Feature Selection for Machine Learning in BCI (BCI에서 기계 학습을 위한 간질 뇌파 특징 선택을 통한 차원 감소 방법 분석)

  • Tong, Yang;Aliyu, Ibrahim;Lim, Chang-Gyoon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.6
    • /
    • pp.1333-1342
    • /
    • 2018
  • Until now, Electroencephalography(: EEG) has been the most important and convenient method for the diagnosis and treatment of epilepsy. However, it is difficult to identify the wave characteristics of an epileptic EEG signals because it is very weak, non-stationary and has strong background noise. In this paper, we analyse the effect of dimensionality reduction methods on Epileptic EEG feature selection and classification. Three dimensionality reduction methods: Pincipal Component Analysis(: PCA), Kernel Principal Component Analysis(: KPCA) and Linear Discriminant Analysis(: LDA) were investigated. The performance of each method was evaluated by using Support Vector Machine SVM, Logistic Regression(: LR), K-Nearestneighbor(: K-NN), Decision Tree(: DR) and Random Forest(: RF). From the experimental result, PCA recorded 75% of highest accuracy in SVM, LR and K-NN. KPCA recorded 85% of best performance in SVM and K-KNN while LDA achieved 100% accuracy in K-NN. Thus, LDA dimensionality reduction is found to provide the best classification result for epileptic EEG signal.

Machine Learning-based Quality Control and Error Correction Using Homogeneous Temporal Data Collected by IoT Sensors (IoT센서로 수집된 균질 시간 데이터를 이용한 기계학습 기반의 품질관리 및 데이터 보정)

  • Kim, Hye-Jin;Lee, Hyeon Soo;Choi, Byung Jin;Kim, Yong-Hyuk
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.4
    • /
    • pp.17-23
    • /
    • 2019
  • In this paper, quality control (QC) is applied to each meteorological element of weather data collected from seven IoT sensors such as temperature. In addition, we propose a method for estimating the data regarded as error by means of machine learning. The collected meteorological data was linearly interpolated based on the basic QC results, and then machine learning-based QC was performed. Support vector regression, decision table, and multilayer perceptron were used as machine learning techniques. We confirmed that the mean absolute error (MAE) of the machine learning models through the basic QC is 21% lower than that of models without basic QC. In addition, when the support vector regression model was compared with other machine learning methods, it was found that the MAE is 24% lower than that of the multilayer neural network and 58% lower than that of the decision table on average.

Strain demand prediction of buried steel pipeline at strike-slip fault crossings: A surrogate model approach

  • Xie, Junyao;Zhang, Lu;Zheng, Qian;Liu, Xiaoben;Dubljevic, Stevan;Zhang, Hong
    • Earthquakes and Structures
    • /
    • v.20 no.1
    • /
    • pp.109-122
    • /
    • 2021
  • Significant progress in the oil and gas industry advances the application of pipeline into an intelligent era, which poses rigorous requirements on pipeline safety, reliability, and maintainability, especially when crossing seismic zones. In general, strike-slip faults are prone to induce large deformation leading to local buckling and global rupture eventually. To evaluate the performance and safety of pipelines in this situation, numerical simulations are proved to be a relatively accurate and reliable technique based on the built-in physical models and advanced grid technology. However, the computational cost is prohibitive, so one has to wait for a long time to attain a calculation result for complex large-scale pipelines. In this manuscript, an efficient and accurate surrogate model based on machine learning is proposed for strain demand prediction of buried X80 pipelines subjected to strike-slip faults. Specifically, the support vector regression model serves as a surrogate model to learn the high-dimensional nonlinear relationship which maps multiple input variables, including pipe geometries, internal pressures, and strike-slip displacements, to output variables (namely tensile strains and compressive strains). The effectiveness and efficiency of the proposed method are validated by numerical studies considering different effects caused by structural sizes, internal pressure, and strike-slip movements.