• Title/Summary/Keyword: support vector regression.

Search Result 554, Processing Time 0.027 seconds

DEVELOPMENT OF A MAJORITY VOTE DECISION MODULE FOR A SELF-DIAGNOSTIC MONITORING SYSTEM FOR AN AIR-OPERATED VALVE SYSTEM

  • KIM, WOOSHIK;CHAI, JANGBOM;KIM, INTAEK
    • Nuclear Engineering and Technology
    • /
    • v.47 no.5
    • /
    • pp.624-632
    • /
    • 2015
  • A self-diagnostic monitoring system is a system that has the ability to measure various physical quantities such as temperature, pressure, or acceleration from sensors scattered over a mechanical system such as a power plant, in order to monitor its various states, and to make a decision about its health status. We have developed a self-diagnostic monitoring system for an air-operated valve system to be used in a nuclear power plant. In this study, we have tried to improve the self-diagnostic monitoring system to increase its reliability. We have implemented three different machine learning algorithms, i.e., logistic regression, an artificial neural network, and a support vector machine. After each algorithm performs the decision process independently, the decision-making module collects these individual decisions and makes a final decision using a majority vote scheme. With this, we performed some simulations and presented some of its results. The contribution of this study is that, by employing more robust and stable algorithms, each of the algorithms performs the recognition task more accurately. Moreover, by integrating these results and employing the majority vote scheme, we can make a definite decision, which makes the self-diagnostic monitoring system more reliable.

The Development of a SVR-based Empirical Model for the Effect of the Unbalanced Floor Height on MVC of Lifting Task (불균형한 바닥높이가 들기 작업의 최대발휘근력에 미치는 영향 분석을 위한 SVR 예측모델 설계)

  • Oh, Hyunsoo;Chang, Seong Rok;Kim, Younghwan;Lee, Chang Jun
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.4
    • /
    • pp.153-159
    • /
    • 2014
  • Low back pain is one of major issues in musculoskeletal diseases mainly caused by MMH (Manual Material Handling) tasks. In Korea, the standards of NIOSH(National Institute for Occupational Safety and Health) Lift Equations in U. S. A. have been most widely used. However, there is no standard in case the height of one feet is higher than that of another one. Moreover, since the standards are developed in U. S. A., there are many limitations for the applicability of Korean workers. In this study, MVC(Maximum Voluntary Contraction) for four postures are measured and an empirical model based on SVR(Support Vector Regression) is constructed. Constructing SVR model, PSO(Particle Swarm Optimization) is employed to investigate the optimal parameters of SVR. The results show that the performance of this empirical model is approximately accurate, even if the deviation of experimental values is large due to the individual differences. This empirical model may contribute to establish the standards of MMH tasks in Korea.

Wireless Internet Service Classification using Data Mining (데이터 마이닝을 이용한 무선 인터넷 서비스 분류기법)

  • Lee, Seong-Jin;Song, Jong-Woo;Ahn, Soo-Han;Won, You-Jip;Chang, Jae-Sung
    • Journal of KIISE:Information Networking
    • /
    • v.36 no.3
    • /
    • pp.153-162
    • /
    • 2009
  • It is a challenging work for service operators to accurately classify different services, which runs on various wireless networks based upon numerous platforms. This works focuses on design and implementation of a classifier, which accurately classifies applications, which are captured horn WiBro Network. Notion of session is introduced for the classifier, instead of commonly used Flow to develop a classifier. Based on session information of given traffic, two classification algorithms are presented, Classification and Regression Tree and Support Vector Machine. Both algorithms are capable of classifying accurately and effectively with misclassification rate of 0.85%, and 0.94%, respectively. This work shows that classifier using CART provides ease of interpreting the result and implementation.

Method using XFEM and SVR to predict the fatigue life of plate-like structures

  • Jiang, Zhansi;Xiang, Jiawei
    • Structural Engineering and Mechanics
    • /
    • v.73 no.4
    • /
    • pp.455-462
    • /
    • 2020
  • The hybrid method using the extended finite element method (XFEM) and the forward Euler approach is widely employed to predict the fatigue life of plate structures. Due to the accuracy of the forward Euler approach is determined by a small step size, the performance of fatigue life prediction of the hybrid method is not agreeable. Instead the forward Euler approach, a prediction method using midpoint method and support vector regression (SVR) is presented to evaluate the stress intensity factors (SIFs) and the fatigue life. Firstly, the XFEM is employed to calculate the SIFs with given crack sizes. Then use the history of SIFs as a function of either number of fatigue life cycles or crack sizes within the current cycle to build a prediction model. Finally, according to the prediction model predict the SIFs at different crack sizes or different cycles. Three numerical cases composed by a homogeneous plate with edge crack, a composite plate with edge crack and center crack are introduced to verify the performance of the proposed method. The results show that the proposed method enables large step sizes without sacrificing accuracy. The method is expected to predict the fatigue life of complex structures.

A Comparative Study on the Accuracy of Important Statistical Prediction Techniques for Marketing Data (마케팅 데이터를 대상으로 중요 통계 예측 기법의 정확성에 대한 비교 연구)

  • Cho, Min-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.4
    • /
    • pp.775-780
    • /
    • 2019
  • Techniques for predicting the future can be categorized into statistics-based and deep-run-based techniques. Among them, statistic-based techniques are widely used because simple and highly accurate. However, working-level officials have difficulty using many analytical techniques correctly. In this study, we compared the accuracy of prediction by applying multinomial logistic regression, decision tree, random forest, support vector machine, and Bayesian inference to marketing related data. The same marketing data was used, and analysis was conducted by using R. The prediction results of various techniques reflecting the data characteristics of the marketing field will be a good reference for practitioners.

Data-Driven Modelling of Damage Prediction of Granite Using Acoustic Emission Parameters in Nuclear Waste Repository

  • Lee, Hang-Lo;Kim, Jin-Seop;Hong, Chang-Ho;Jeong, Ho-Young;Cho, Dong-Keun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.1
    • /
    • pp.75-85
    • /
    • 2021
  • Evaluating the quantitative damage to rocks through acoustic emission (AE) has become a research focus. Most studies mainly used one or two AE parameters to evaluate the degree of damage, but several AE parameters have been rarely used. In this study, several data-driven models were employed to reflect the combined features of AE parameters. Through uniaxial compression tests, we obtained mechanical and AE-signal data for five granite specimens. The maximum amplitude, hits, counts, rise time, absolute energy, and initiation frequency expressed as the cumulative value were selected as input parameters. The result showed that gradient boosting (GB) was the best model among the support vector regression methods. When GB was applied to the testing data, the root-mean-square error and R between the predicted and actual values were 0.96 and 0.077, respectively. A parameter analysis was performed to capture the parameter significance. The result showed that cumulative absolute energy was the main parameter for damage prediction. Thus, AE has practical applicability in predicting rock damage without conducting mechanical tests. Based on the results, this study will be useful for monitoring the near-field rock mass of nuclear waste repository.

Reliability-based assessment of high-speed railway subgrade defect

  • Feng, Qingsong;Sun, Kui;Chen, Hua-peng
    • Structural Engineering and Mechanics
    • /
    • v.77 no.2
    • /
    • pp.231-243
    • /
    • 2021
  • In this paper, a dynamic response mapping model of the wheel-rail system is established by using the support vector regression (SVR) method, and the hierarchical safety thresholds of the subgrade void are proposed based on the reliability theory. Firstly, the vehicle-track coupling dynamic model considering the subgrade void is constructed. Secondly, the subgrade void area, the subgrade compaction index K30 and the fastener stiffness are selected as random variables, and the mapping model between these three random parameters and the dynamic response of the wheel-rail system is built by using the orthogonal test and the SVR. The sensitivity analysis is carried out by the range analysis method. Finally, the hierarchical safety thresholds for the subgrade void are proposed. The results show that the subgrade void has the most significant influence on the carbody vertical acceleration, the rail vertical displacement, the vertical displacement and the slab tensile stress. From the range analysis, the subgrade void area has the largest effect on the dynamic response of the wheel-rail system, followed by the fastener stiffness and the subgrade compaction index K30. The recommended safety thresholds for the subgrade void of level I, II and III are 4.01㎡, 6.81㎡ and 9.79㎡, respectively.

Optimal PID Control for Temperature Control of Chiller Equipment (칠러장비의 온도제어를 위한 최적 PID 제어)

  • Park, Young-shin;Lee, Dongju
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.3
    • /
    • pp.131-138
    • /
    • 2022
  • The demand for chiller equipment that keeps each machine at a constant temperature to maintain the best possible condition is growing rapidly. PID (Proportional Integral Derivation) control is a popular temperature control method. The error, which is the difference between the desired target value and the current system output value, is calculated and used as an input to the system using a proportional, integrator, and differentiator. Through such a closed-loop configuration, a desired final output value of the system can be reached using only the target value and the feedback signal. Furthermore, various temperature control methods have been devised as the control performance of various high-performance equipment becomes important. Therefore, it is necessary to design for accurate data-driven temperature control for chiller equipment. In this research, support vector regression is applied to the classic PID control for accurate temperature control. Simulated annealing is applied to find optimal PID parameters. The results of the proposed control method show fast and effective control performance for chiller equipment.

Usage of coot optimization-based random forests analysis for determining the shallow foundation settlement

  • Yi, Han;Xingliang, Jiang;Ye, Wang;Hui, Wang
    • Geomechanics and Engineering
    • /
    • v.32 no.3
    • /
    • pp.271-291
    • /
    • 2023
  • Settlement estimation in cohesion materials is a crucial topic to tackle because of the complexity of the cohesion soil texture, which could be solved roughly by substituted solutions. The goal of this research was to implement recently developed machine learning features as effective methods to predict settlement (Sm) of shallow foundations over cohesion soil properties. These models include hybridized support vector regression (SVR), random forests (RF), and coot optimization algorithm (COM), and black widow optimization algorithm (BWOA). The results indicate that all created systems accurately simulated the Sm, with an R2 of better than 0.979 and 0.9765 for the train and test data phases, respectively. This indicates extraordinary efficiency and a good correlation between the experimental and simulated Sm. The model's results outperformed those of ANFIS - PSO, and COM - RF findings were much outstanding to those of the literature. By analyzing established designs utilizing different analysis aspects, such as various error criteria, Taylor diagrams, uncertainty analyses, and error distribution, it was feasible to arrive at the final result that the recommended COM - RF was the outperformed approach in the forecasting process of Sm of shallow foundation, while other techniques were also reliable.

A Strategy of Assessing Climate Factors' Influence for Agriculture Output

  • Kuan, Chin-Hung;Leu, Yungho;Lee, Chien-Pang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.5
    • /
    • pp.1414-1430
    • /
    • 2022
  • Due to the Internet of Things popularity, many agricultural data are collected by sensors automatically. The abundance of agricultural data makes precise prediction of rice yield possible. Because the climate factors have an essential effect on the rice yield, we considered the climate factors in the prediction model. Accordingly, this paper proposes a machine learning model for rice yield prediction in Taiwan, including the genetic algorithm and support vector regression model. The dataset of this study includes the meteorological data from the Central Weather Bureau and rice yield of Taiwan from 2003 to 2019. The experimental results show the performance of the proposed model is nearly 30% better than MARS, RF, ANN, and SVR models. The most important climate factors affecting the rice yield are the total sunshine hours, the number of rainfall days, and the temperature.The proposed model also offers three advantages: (a) the proposed model can be used in different geographical regions with high prediction accuracies; (b) the proposed model has a high explanatory ability because it could select the important climate factors which affect rice yield; (c) the proposed model is more suitable for predicting rice yield because it provides higher reliability and stability for predicting. The proposed model can assist the government in making sustainable agricultural policies.