• Title/Summary/Keyword: support vector regression.

Search Result 554, Processing Time 0.032 seconds

Utilization of support vector machine for prediction of fracture parameters of concrete

  • Samui, Pijush;Kim, Dookie
    • Computers and Concrete
    • /
    • v.9 no.3
    • /
    • pp.215-226
    • /
    • 2012
  • This article employs Support Vector Machine (SVM) for determination of fracture parameters critical stress intensity factor ($K^s_{Ic}$) and the critical crack tip opening displacement ($CTOD_c$) of concrete. SVM that is firmly based on the theory of statistical learning theory, uses regression technique by introducing ${\varepsilon}$-insensitive loss function has been adopted. The results are compared with a widely used Artificial Neural Network (ANN) model. Equations have been also developed for prediction of $K^s_{Ic}$ and $CTOD_c$. A sensitivity analysis has been also performed to investigate the importance of the input parameters. The results of this study show that the developed SVM is a robust model for determination of $K^s_{Ic}$ and $CTOD_c$ of concrete.

Quantitative Structure Activity Relationship Prediction of Oral Bioavailabilities Using Support Vector Machine

  • Fatemi, Mohammad Hossein;Fadaei, Fatemeh
    • Journal of the Korean Chemical Society
    • /
    • v.58 no.6
    • /
    • pp.543-552
    • /
    • 2014
  • A quantitative structure activity relationship (QSAR) study is performed for modeling and prediction of oral bioavailabilities of 216 diverse set of drugs. After calculation and screening of molecular descriptors, linear and nonlinear models were developed by using multiple linear regression (MLR), artificial neural network (ANN), support vector machine (SVM) and random forest (RF) techniques. Comparison between statistical parameters of these models indicates the suitability of SVM over other models. The root mean square errors of SVM model were 5.933 and 4.934 for training and test sets, respectively. Robustness and reliability of the developed SVM model was evaluated by performing of leave many out cross validation test, which produces the statistic of $Q^2_{SVM}=0.603$ and SPRESS = 7.902. Moreover, the chemical applicability domains of model were determined via leverage approach. The results of this study revealed the applicability of QSAR approach by using SVM in prediction of oral bioavailability of drugs.

Combining genetic algorithms and support vector machines for bankruptcy prediction

  • Min, Sung-Hwan;Lee, Ju-Min;Han, In-Goo
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2004.11a
    • /
    • pp.179-188
    • /
    • 2004
  • Bankruptcy prediction is an important and widely studied topic since it can have significant impact on bank lending decisions and profitability. Recently, support vector machine (SVM) has been applied to the problem of bankruptcy prediction. The SVM-based method has been compared with other methods such as neural network, logistic regression and has shown good results. Genetic algorithm (GA) has been increasingly applied in conjunction with other AI techniques such as neural network, CBR. However, few studies have dealt with integration of GA and SVM, though there is a great potential for useful applications in this area. This study proposes the methods for improving SVM performance in two aspects: feature subset selection and parameter optimization. GA is used to optimize both feature subset and parameters of SVM simultaneously for bankruptcy prediction.

  • PDF

Application and evaluation of machine-learning model for fire accelerant classification from GC-MS data of fire residue

  • Park, Chihyun;Park, Wooyong;Jeon, Sookyung;Lee, Sumin;Lee, Joon-Bae
    • Analytical Science and Technology
    • /
    • v.34 no.5
    • /
    • pp.231-239
    • /
    • 2021
  • Detection of fire accelerants from fire residues is critical to determine whether the case was arson or accidental fire. However, to develop a standardized model for determining the presence or absence of fire accelerants was not easy because of high temperature which cause disappearance or combustion of components of fire accelerants. In this study, logistic regression, random forest, and support vector machine models were trained and evaluated from a total of 728 GC-MS analysis data obtained from actual fire residues. Mean classification accuracies of the three models were 63 %, 81 %, and 84 %, respectively, and in particular, mean AU-PR values of the three models were evaluated as 0.68, 0.86, and 0.86, respectively, showing fine performances of random forest and support vector machine models.

Applied linear and nonlinear statistical models for evaluating strength of Geopolymer concrete

  • Prem, Prabhat Ranjan;Thirumalaiselvi, A.;Verma, Mohit
    • Computers and Concrete
    • /
    • v.24 no.1
    • /
    • pp.7-17
    • /
    • 2019
  • The complex phenomenon of the bond formation in geopolymer is not well understood and therefore, difficult to model. This paper present applied statistical models for evaluating the compressive strength of geopolymer. The applied statistical models studied are divided into three different categories - linear regression [least absolute shrinkage and selection operator (LASSO) and elastic net], tree regression [decision and bagging tree] and kernel methods (support vector regression (SVR), kernel ridge regression (KRR), Gaussian process regression (GPR), relevance vector machine (RVM)]. The performance of the methods is compared in terms of error indices, computational effort, convergence and residuals. Based on the present study, kernel based methods (GPR and KRR) are recommended for evaluating compressive strength of Geopolymer concrete.

Mixed effects least squares support vector machine for survival data analysis (생존자료분석을 위한 혼합효과 최소제곱 서포트벡터기계)

  • Hwang, Chang-Ha;Shim, Joo-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.4
    • /
    • pp.739-748
    • /
    • 2012
  • In this paper we propose a mixed effects least squares support vector machine (LS-SVM) for the censored data which are observed from different groups. We use weights by which the randomly right censoring is taken into account in the nonlinear regression. The weights are formed with Kaplan-Meier estimates of censoring distribution. In the proposed model a random effects term representing inter-group variation is included. Furthermore generalized cross validation function is proposed for the selection of the optimal values of hyper-parameters. Experimental results are then presented which indicate the performance of the proposed LS-SVM by comparing with a standard LS-SVM for the censored data.

Sentiment Analysis and Star Rating Prediction Based on Big Data Analysis of Online Reviews of Foreign Tourists Visiting Korea (방한 관광객의 온라인 리뷰에 대한 빅데이터 분석 기반의 감성분석 및 평점 예측모형)

  • Hong, Taeho
    • Knowledge Management Research
    • /
    • v.23 no.1
    • /
    • pp.187-201
    • /
    • 2022
  • Online reviews written by tourists provide important information for the management and operation of the tourism industry. The star rating of online reviews is a simple quantitative evaluation of a product or service, but it is difficult to reflect the sincere attitude of tourists. There is also an issue; the star rating and review content are not matched. In this study, a star rating prediction model based on online review content was proposed to solve the discrepancy problem. We compared the differences in star ratings and sentiment by continent through sentiment analysis on tourist attractions and hotels written by foreign tourists who visited Korea. Variables were selected through TF-IDF vectorization and sentiment analysis results. Logit, artificial neural network, and SVM(Support Vector Machine) were used for the classification model, and artificial neural network and SVR(Support Vector regression) were applied for the rating prediction model. The online review rating prediction model proposed in this study could solve inconsistency problems and also could be applied even if when there is no star rating.

Stereo Calibration Using Support Vector Machine

  • Kim, Se-Hoon;Kim, Sung-Jin;Won, Sang-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.250-255
    • /
    • 2003
  • The position of a 3-dimensional(3D) point can be measured by using calibrated stereo camera. To obtain more accurate measurement ,more accurate camera calibration is required. There are many existing methods to calibrate camera. The simple linear methods are usually not accurate due to nonlinear lens distortion. The nonlinear methods are accurate more than linear method, but it increase computational cost and good initial guess is needed. The multi step methods need to know some camera parameters of used camera. Recent years, these explicit model based camera calibration work with the development of more precise camera models involving correction of lens distortion. But these explicit model based camera calibration have disadvantages. So implicit camera calibration methods have been derived. One of the popular implicit camera calibration method is to use neural network. In this paper, we propose implicit stereo camera calibration method for 3D reconstruction using support vector machine. SVM can learn the relationship between 3D coordinate and image coordinate, and it shows the robust property with the presence of noise and lens distortion, results of simulation are shown in section 4.

  • PDF

Influencing factors and prediction of carbon dioxide emissions using factor analysis and optimized least squares support vector machine

  • Wei, Siwei;Wang, Ting;Li, Yanbin
    • Environmental Engineering Research
    • /
    • v.22 no.2
    • /
    • pp.175-185
    • /
    • 2017
  • As the energy and environmental problems are increasingly severe, researches about carbon dioxide emissions has aroused widespread concern. The accurate prediction of carbon dioxide emissions is essential for carbon emissions controlling. In this paper, we analyze the relationship between carbon dioxide emissions and influencing factors in a comprehensive way through correlation analysis and regression analysis, achieving the effective screening of key factors from 16 preliminary selected factors including GDP, total population, total energy consumption, power generation, steel production coal consumption, private owned automobile quantity, etc. Then fruit fly algorithm is used to optimize the parameters of least squares support vector machine. And the optimized model is used for prediction, overcoming the blindness of parameter selection in least squares support vector machine and maximizing the training speed and global searching ability accordingly. The results show that the prediction accuracy of carbon dioxide emissions is improved effectively. Besides, we conclude economic and environmental policy implications on the basis of analysis and calculation.

Prediction of Local Scour around Bridge Piers using Support Vector Machines (Support Vector Machines를 이용한 교각주위 국부세굴 예측)

  • Choi, Seongwook;Choi, Sung-Uk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.57-61
    • /
    • 2016
  • 교각 주위에서의 국부세굴은 교각을 지나는 유체의 복잡한 흐름에 의해 발생한다. 이를 해석하기 위하여 많은 난류모형을 이용한 실내실험 및 수치실험을 수행하였으나 발생하는 와류를 하천 규모에서 전부 계산하기는 매우 어려운 문제다. 따라서 국부세굴 관련으로 최대 관심사인 최대 세굴심은 인공지능 기술에 근거한 다양한 기법을 적용해 계산하여 예측하기도 한다. 본 연구에서는 기계학습 분야 중 하나인 서포트 벡터 머신 (Support Vector Machines)을 이용하여 교각주위 국부세굴을 예측하였다. SVM은 본래 초평면을 이용하여 데이터를 분류시키는 기법이나 Vapnik(1995)이 제안한 ${\varepsilon}$ 서포트 벡터 회귀 (${\varepsilon}$-support vector regression)방법을 통해 회귀분석에도 활용할 수 있게 되었다. 학습을 위해 Charbert and Engeldinger (1956), Shen et al. (1969), Jain and Fischer (1979), 그리고 Dey et al. (1995)의 실험 자료를 이용하였고 검증을 위해 Yanmaz and Altinbilek (1991)의 실험 자료를 이용하였다. 커널함수로는 다항식 함수와 방사 기저 함수를 이용하였고 각 계수는 적합한 값을 찾기 위해 시행착오법을 사용하였다. 민감도 분석을 통해 각 계수들 중 ${\varepsilon}$의 변화가 결과에 가장 민감하게 변화를 일으키는 것을 확인하였고 검증 결과 SVM가 충분히 국부세굴을 잘 예측하는 것을 확인하였다.

  • PDF