• Title/Summary/Keyword: support vector regression.

Search Result 554, Processing Time 0.175 seconds

Prediction of fine dust PM10 using a deep neural network model (심층 신경망모형을 사용한 미세먼지 PM10의 예측)

  • Jeon, Seonghyeon;Son, Young Sook
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.2
    • /
    • pp.265-285
    • /
    • 2018
  • In this study, we applied a deep neural network model to predict four grades of fine dust $PM_{10}$, 'Good, Moderate, Bad, Very Bad' and two grades, 'Good or Moderate and Bad or Very Bad'. The deep neural network model and existing classification techniques (such as neural network model, multinomial logistic regression model, support vector machine, and random forest) were applied to fine dust daily data observed from 2010 to 2015 in six major metropolitan areas of Korea. Data analysis shows that the deep neural network model outperforms others in the sense of accuracy.

Hybrid Algorithm for Efficient learing of Regression Support Vector Machine (회귀용 Support Vector Machine의 효율적인 학습을 위한 조합형 알고리즘)

  • 조용현;박창환;박용수
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.93-96
    • /
    • 2000
  • 본 논문에서는 SVM의 학습성 개선을 위해 모멘트와 kernel-adatron 기법이 조합된 하이브리드 학습알고리즘을 제안하였다. 제안된 학습알고리즘은 SVM의 학습기법인 기울기상승법에서 발생하는 최적해로의 수렴에 따른 발진을 억제하여 그 수렴속도를 좀 더 개선시키는 모멘트의 장점과 비선형 특징공간에서의 동작과 구현의 용이성을 가진 kernel-adatron 알고리즘의 장점을 그대로 살리는 것이다. 제안된 알고리즘을 비선형 함수 회귀에 적용해 본 결과 학습속도에 있어서 QP와 기존의 kernel-adatron 알고리즘보다 더 우수한 성능이 있음을 확인하였다

  • PDF

SVM-Guided Biplot of Observations and Variables

  • Huh, Myung-Hoe
    • Communications for Statistical Applications and Methods
    • /
    • v.20 no.6
    • /
    • pp.491-498
    • /
    • 2013
  • We consider support vector machines(SVM) to predict Y with p numerical variables $X_1$, ${\ldots}$, $X_p$. This paper aims to build a biplot of p explanatory variables, in which the first dimension indicates the direction of SVM classification and/or regression fits. We use the geometric scheme of kernel principal component analysis adapted to map n observations on the two-dimensional projection plane of which one axis is determined by a SVM model a priori.

An assessment of machine learning models for slump flow and examining redundant features

  • Unlu, Ramazan
    • Computers and Concrete
    • /
    • v.25 no.6
    • /
    • pp.565-574
    • /
    • 2020
  • Over the years, several machine learning approaches have been proposed and utilized to create a prediction model for the high-performance concrete (HPC) slump flow. Despite HPC is a highly complex material, predicting its pattern is a rather ambitious process. Hence, choosing and applying the correct method remain a crucial task. Like some other problems, prediction of HPC slump flow suffers from abnormal attributes which might both have an influence on prediction accuracy and increases variance. In recent years, different studies are proposed to optimize the prediction accuracy for HPC slump flow. However, more state-of-the-art regression algorithms can be implemented to create a better model. This study focuses on several methods with different mathematical backgrounds to get the best possible results. Four well-known algorithms Support Vector Regression, M5P Trees, Random Forest, and MLPReg are implemented with optimum parameters as base learners. Also, redundant features are examined to better understand both how ingredients influence on prediction models and whether possible to achieve acceptable results with a few components. Based on the findings, the MLPReg algorithm with optimum parameters gives better results than others in terms of commonly used statistical error evaluation metrics. Besides, chosen algorithms can give rather accurate results using just a few attributes of a slump flow dataset.

Quantile regression using asymmetric Laplace distribution (비대칭 라플라스 분포를 이용한 분위수 회귀)

  • Park, Hye-Jung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.6
    • /
    • pp.1093-1101
    • /
    • 2009
  • Quantile regression has become a more widely used technique to describe the distribution of a response variable given a set of explanatory variables. This paper proposes a novel modelfor quantile regression using doubly penalized kernel machine with support vector machine iteratively reweighted least squares (SVM-IRWLS). To make inference about the shape of a population distribution, the widely popularregression, would be inadequate, if the distribution is not approximately Gaussian. We present a likelihood-based approach to the estimation of the regression quantiles that uses the asymmetric Laplace density.

  • PDF

Forecasting daily PM10 concentrations in Seoul using various data mining techniques

  • Choi, Ji-Eun;Lee, Hyesun;Song, Jongwoo
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.2
    • /
    • pp.199-215
    • /
    • 2018
  • Interest in $PM_{10}$ concentrations have increased greatly in Korea due to recent increases in air pollution levels. Therefore, we consider a forecasting model for next day $PM_{10}$ concentration based on the principal elements of air pollution, weather information and Beijing $PM_{2.5}$. If we can forecast the next day $PM_{10}$ concentration level accurately, we believe that this forecasting can be useful for policy makers and public. This paper is intended to help forecast a daily mean $PM_{10}$, a daily max $PM_{10}$ and four stages of $PM_{10}$ provided by the Ministry of Environment using various data mining techniques. We use seven models to forecast the daily $PM_{10}$, which include five regression models (linear regression, Randomforest, gradient boosting, support vector machine, neural network), and two time series models (ARIMA, ARFIMA). As a result, the linear regression model performs the best in the $PM_{10}$ concentration forecast and the linear regression and Randomforest model performs the best in the $PM_{10}$ class forecast. The results also indicate that the $PM_{10}$ in Seoul is influenced by Beijing $PM_{2.5}$ and air pollution from power stations in the west coast.

Fluency Scoring of English Speaking Tests for Nonnative Speakers Using a Native English Phone Recognizer

  • Jang, Byeong-Yong;Kwon, Oh-Wook
    • Phonetics and Speech Sciences
    • /
    • v.7 no.2
    • /
    • pp.149-156
    • /
    • 2015
  • We propose a new method for automatic fluency scoring of English speaking tests spoken by nonnative speakers in a free-talking style. The proposed method is different from the previous methods in that it does not require the transcribed texts for spoken utterances. At first, an input utterance is segmented into a phone sequence by using a phone recognizer trained by using native speech databases. For each utterance, a feature vector with 6 features is extracted by processing the segmentation results of the phone recognizer. Then, fluency score is computed by applying support vector regression (SVR) to the feature vector. The parameters of SVR are learned by using the rater scores for the utterances. In computer experiments with 3 tests taken by 48 Korean adults, we show that speech rate, phonation time ratio, and smoothed unfilled pause rate are best for fluency scoring. The correlation of between the rater score and the SVR score is shown to be 0.84, which is higher than the correlation of 0.78 among raters. Although the correlation is slightly lower than the correlation of 0.90 when the transcribed texts are given, it implies that the proposed method can be used as a preprocessing tool for fluency evaluation of speaking tests.

Kernel Adatron Algorithm of Support Vector Machine for Function Approximation (함수근사를 위한 서포트 벡터 기계의 커널 애더트론 알고리즘)

  • Seok, Kyung-Ha;Hwang, Chang-Ha
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.6
    • /
    • pp.1867-1873
    • /
    • 2000
  • Function approximation from a set of input-output pairs has numerous applications in scientific and engineering areas. Support vector machine (SVM) is a new and very promising classification, regression and function approximation technique developed by Vapnik and his group at AT&TG Bell Laboratories. However, it has failed to establish itself as common machine learning tool. This is partly due to the fact that this is not easy to implement, and its standard implementation requires the use of optimization package for quadratic programming (QP). In this appear we present simple iterative Kernel Adatron (KA) algorithm for function approximation and compare it with standard SVM algorithm using QP.

  • PDF

Semiparametric support vector machine for accelerated failure time model

  • Hwang, Chang-Ha;Shim, Joo-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.4
    • /
    • pp.765-775
    • /
    • 2010
  • For the accelerated failure time (AFT) model a lot of effort has been devoted to develop effective estimation methods. AFT model assumes a linear relationship between the logarithm of event time and covariates. In this paper we propose a semiparametric support vector machine to consider situations where the functional form of the effect of one or more covariates is unknown. The proposed estimating equation can be computed by a quadratic programming and a linear equation. We study the effect of several covariates on a censored response variable with an unknown probability distribution. We also provide a generalized approximate cross-validation method for choosing the hyper-parameters which affect the performance of the proposed approach. The proposed method is evaluated through simulations using the artificial example.

Feature reduction for classifying high dimensional data sets using support vector machine (고차원 데이터의 분류를 위한 서포트 벡터 머신을 이용한 피처 감소 기법)

  • Ko, Seok-Ha;Lee, Hyun-Ju
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.877-878
    • /
    • 2008
  • We suggest a feature reduction method to classify mouse function data sets, which integrate several biological data sets represented as high dimensional vectors. To increase classification accuracy and decrease computational overhead, it is important to reduce the dimension of features. To do this, we employed Hybrid Huberized Support Vector Machine with kernels used for a kernel logistic regression method. When compared to support vector machine, this a pproach shows the better accuracy with useful features for each mouse function.

  • PDF