• 제목/요약/키워드: support stiffness

검색결과 438건 처리시간 0.026초

광학거울 시스템의 지지구조 설계를 위한 라그랑지 방정식과 최적화 기법 적용에 의한 효과분석 (The Effectiveness Analysis Due to the Use of Lagrange Equation and the Optimization Technology for Design of the Support Structure of the Optical Mirror System)

  • 김학인;남병욱;김광태;김병운
    • 한국군사과학기술학회지
    • /
    • 제21권3호
    • /
    • pp.264-278
    • /
    • 2018
  • The support structure of an optical mirror system is the one of the important design elements because the one affects the optical aberrations of the mirror surface. In this paper, Lagrange equation of the moving body of the fast steering mirror system(FSM) has been formulated to use with optimization design. Major goals for optimization are to assign the reasonably flexible stiffness to the structure and to enhance the first natural frequency of the mirror and support system in aid of more affordable control bandwidth for the FSM. Pursuing these purposes with the proposed method, the finite element analysis(FEA), optimization technique and the Zernike polynomial estimation are used for the design effects. It is concluded that the proposed approach for design well guides toward the desired design goals with regards to both structural and optical performances.

A new algorithm for design of support structures in additive manufacturing by using topology optimization

  • Haleh Sadat Kazemi;Seyed Mehdi Tavakkoli
    • Structural Engineering and Mechanics
    • /
    • 제86권1호
    • /
    • pp.93-107
    • /
    • 2023
  • In this paper, a density based topology optimization is proposed for generating of supports required in additive manufacturing to maintain the overhanging regions of main structures during layer by layer fabrication process. For this purpose, isogeometric analysis method is employed to model geometry and structural analysis of main and support structures. In order to model the problem two cases are investigated. In the first case, design domain of supports can easily be separated from the main structure by using distinct isogeometric patches. The second case happens when the main structure itself is optimized by using topology optimization and the supports should be designed in the voids of optimum layout. In this case, in order to avoid boundary identification and re-meshing process for separating design domain of supports from main structure, a parameterization technique is proposed to identify the design domain of supports. To achieve this, two density functions are defined over the entire domain to describe the main structure and supporting areas. On the other hand, since supports are under gravity loads while main structure and its stiffness is not completed during manufacturing process, in the proposed method, stiffness of the main structure is considered to be trivial and the gravity loads are also naturally applied to design support structures. By doing so, the results show reasonable supports are created to protect, continuously, overhanging surfaces of the main structure. Several examples are presented to demonstrate the efficiency of the proposed method and compare the results with literature.

혁신적 프리스트레스트 가시설(IPS)의 띠장에 대한 등가 휨강성의 산정 (Estimation for Equivalent Flexural Stiffness of Innovative Prestressed Support(IPS) Wale)

  • 김성보;김훈겸;허인성
    • 한국강구조학회 논문집
    • /
    • 제21권4호
    • /
    • pp.393-401
    • /
    • 2009
  • 본 논문에서는 혁신적 프리스트레스트 가시설(IPS)에 적용되는 띠장에 대한 휨 강성식을 엄밀히 유도하고, 이를 바탕으로 실제 굴착 설계에 필요한 띠장의 등가 휨강성 설계식을 제시하였다. 횡 토압을 받는 IPS 띠장에 배치된 케이블 장력을 축 변형 효과를 고려한 경우와 무시한 경우에 대하여 각각 엄밀해를 도출하였다. 가상일의 원리를 이용하여 1-Post, 2-Post, 3-Post와 4-Post의 받침대를 갖는 IPS 띠장 중앙부의 수직변위를 유도하였고, 지간장과 케이블 경사각의 변화에 따른 띠장의 휨 거동 특성을 파악하였다. 유도된 중앙부 변위로부터 실제 굴착면 설계시 활용될 수 있는 간략화된 IPS 띠장의 등가 휨강성을 제시하였고, 본 연구에서 도출된 엄밀해 및 범용 유한요소해석 프로그램을 이용한 결과 비교를 통하여 제시된 설계식의 타당성을 입증하였다.

FEA Simulations and Tests of Rubber Insulator for Truck Suspension

  • Hur, Shin;Woo, Chang Su
    • Elastomers and Composites
    • /
    • 제52권4호
    • /
    • pp.303-308
    • /
    • 2017
  • In this study, finite element modeling and material property tests are performed for the finite element analysis of rubber isolator parts which support the engine and isolate the vibration. As a result of the P direction analysis of the rubber isolator parts, the static stiffness in the P direction was 44.2 kg/mm, which is well within the error of 5% as compared with the test result of 46.1 kg/mm. The static stiffness of the rubber isolator parts in the Q direction was calculated to be 7.9 kg/mm, which is comparable to the test result of 8.6 kg/mm, with an error of less than 8%. As a result of the analysis on the Z direction, the static stiffness was calculated as 57.7 kg/mm, and the test results were not available. Through this study, it is expected that the time and cost for prototype development can be reduced through nonlinear finite element analysis for rubber isolator parts.

현장탄성파시험을 이용한 강화노반의 시간적 강성 변화 (Temporal Variations of Reinforced Roadbed Stiffness Using In-situ Seismic Tests)

  • 목영진;박철수;임정열;최충락
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.404-411
    • /
    • 2007
  • Reinforced roadbeds are valued from the point of view of maintenance as well as enhanced mechanical capacity. They support more train load and less transmit to the sub-layers than general roadbeds. Also, the lateral sloping surface of the reinforced roadbed and its low permeability, achieved by the controlled compaction, increase drainage capability and prevent the softening of sub-layers. In the study, a series of cross-hole tests was performed to observe the temporal changes in the stiffness of reinforced roadbeds, if any, due to the cyclic loading of trains and alternating rainy and frozen seasons at Pyeong-taek experimental site. The three types of reinforced roadbed materials are slag, crushed stones, and soils, and the thickness of all the reinforced roadbeds is 0.8m. The stiffness of the slag and soil reinforced roadbeds was not changed or slightly decreased. The stiffness of the crushed stone was somewhat increased and is inferred to being densified close to surface.

  • PDF

디스크 받침용 고무패드의 거동 및 강성추정 (The Behavior and Estimated Stiffness Rubber Pad for Disk Bearing)

  • 조성철;최은수;박주남;김만철
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집
    • /
    • pp.599-605
    • /
    • 2009
  • The aim of the present study is the characteristics of bridge rubber pads and suggested how to determine the stiffness the pads. A disk bearing is operated as an elastic bearing in the vertical direction and is composed of a Polyether Urethane (polyurethane) disk for elastic support and Polytetrafluoroethylene (PTFE) to accommodate movement. Static tests are conducted in a laboratory to determine the static behavior of a Polyurethane disk. Finite Element (FE) analysis is also performed to verify the static performance. For dynamic behavior, four disk bearings having the identical Polyurethane disk used in the static tests are installed in a full size railway bridge and tested under a running locomotive. From the tests results, the static and dynamic stiffness of disk bearings are estimated and compared with each other. In the procedure to estimate the stiffness of a pad, the dead load(pre-load) of a bridge and live load of a vehicle are considered.

  • PDF

선박 장비 받침대의 동강성 평가를 위한 유한요소 모델링과 해석 인자에 관한 연구 (A Study on the Finite Element Modeling and Analytical Parameters for the Dynamic Stiffness Evaluation of Shipboard Equipment Foundations)

  • 김국현;김윤환;최태묵;최성원;조대승
    • 대한조선학회논문집
    • /
    • 제47권6호
    • /
    • pp.808-812
    • /
    • 2010
  • This paper studies the finite element modeling and analytical parameters for the numerical evaluation of dynamic stiffness of large foundation for shipboard equipments such as marine diesel engine. For the purpose, numerical method and procedure to evaluate the dynamic stiffness are established based on the impact test method, which are applied for the dynamic stiffness evaluation of a real diesel generator foundation of ship. Numerical investigations compared with the measured data are carried out to evaluate the effects of modeling ranges of ship substructure, finite element sizes, lower support structures and damping coefficients. From the results, modeling and analytical parameters for proper evaluation of dynamic stiffness of large foundation of shipboard equipment are suggested.

Analytical solutions for mechanical response of circular tunnels with double primary linings in squeezing grounds

  • Wu, Kui;Shao, Zhushan;Hong, Siyuan;Qin, Su
    • Geomechanics and Engineering
    • /
    • 제22권6호
    • /
    • pp.509-518
    • /
    • 2020
  • Multi-layered primary linings have been proved to be highly effective for tunneling in severe squeezing grounds. But there still has not existed well-established design method for it. Basically, there are two main critical problems in this method, including determinations of allowable deformation and distribution of support stiffness. In order to address such problems, an attempt to investigate the mechanical response of a circular tunnel with double primary linings is performed in this paper. Analytical solutions in closed form for stresses and displacements around tunnels are derived. In addition, the effectiveness and reliability of theoretical formulas provided are well validated by using the numerical method. Finally, based on the analytical solutions, a parametric investigation on the effects of allowable deformation and distribution of support stiffness on tunnel performance is conducted. Results show that the rock pressure and displacement are significantly affected by these two design parameters. It can be found that rock pressure decreases as either allowable deformation increases or stiffness of the first primary lining decreases, but rock displacement shows an opposite trend. This paper can provide a useful guidance for the design of multi-layered primary linings.

System Identification 기법을 이용한 복합소재 바닥판 해석모델의 최적강성추정 (Optimal Stiffness Estimation of Composite Decks Model using System Identification)

  • 서형열;김두기;김동현;취진타오;박기태
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.565-570
    • /
    • 2007
  • Fiber reinforced polymer(FRP) composite decks are new to bridge applications and hence not much literature exists on their structural mechanical behavior. As there are many differences between numerical displacements through static analysis of the primary model and experimental displacements through static load tests, system identification (SI)techniques such as Neural Networks (NN) and support vector machines (SVM) utilized in the optimization of the FE model. During the process of identification, displacements were used as input while stiffness as outputs. Through the comparison of numerical displacements after SI and experimental displacements, it can note that NN and SVM would be effective SI methods in modeling an FRP deck. Moreover, two methods such as response surface method and iteration were proposed to optimize the estimated stiffness. Finally, the results were compared through the mean square error (MSE) of the differences between numerical displacements and experimental displacements at 6 points.

  • PDF

Mechanical analysis of tunnels supported by yieldable steel ribs in rheological rocks

  • Wu, Kui;Shao, Zhushan;Qin, Su;Zhao, Nannan
    • Geomechanics and Engineering
    • /
    • 제19권1호
    • /
    • pp.61-70
    • /
    • 2019
  • Yieldable steel ribs have been widely applied in tunnels excavated in rheological rocks. For further understanding the influence of yieldable steel ribs on supporting effect, mechanical behavior of tunnels supported by them in rheological rocks is investigated in this paper. Taking into account the deformation characteristic of yieldable steel ribs, their deformation is divided into three stages. In order to modify the stiffness of yieldable steel ribs in different deformation stages, two stiffness correction factors are introduced in the latter two stages. Viscoelastic analytical solutions for the displacement and pressure in the rock-support interface in each deformation stage are obtained. The reliability of the theoretical analysis is verified by use of numerical simulation. It could be concluded that yieldable steel ribs are able to reduce pressure acting on them without becoming damaged through accommodating the rock deformation. The influence of stiffness correction factor in yielding deformation stage on pressure and displacement could be neglected with it remaining at a low level. Furthermore, there is a linearly descending relationship of pressure with yielding displacement in linear viscoelastic rocks.