• Title/Summary/Keyword: support optimization

Search Result 765, Processing Time 0.029 seconds

Tool Lifecycle Optimization using ν-Asymmetric Support Vector Regression (ν-ASVR을 이용한 공구라이프사이클 최적화)

  • Lee, Dongju
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.4
    • /
    • pp.208-216
    • /
    • 2020
  • With the spread of smart manufacturing, one of the key topics of the 4th industrial revolution, manufacturing systems are moving beyond automation to smartization using artificial intelligence. In particular, in the existing automatic machining, a number of machining defects and non-processing occur due to tool damage or severe wear, resulting in a decrease in productivity and an increase in quality defect rates. Therefore, it is important to measure and predict tool life. In this paper, ν-ASVR (ν-Asymmetric Support Vector Regression), which considers the asymmetry of ⲉ-tube and the asymmetry of penalties for data out of ⲉ-tube, was proposed and applied to the tool wear prediction problem. In the case of tool wear, if the predicted value of the tool wear amount is smaller than the actual value (under-estimation), product failure may occur due to tool damage or wear. Therefore, it can be said that ν-ASVR is suitable because it is necessary to overestimate. It is shown that even when adjusting the asymmetry of ⲉ-tube and the asymmetry of penalties for data out of ⲉ-tube, the ratio of the number of data belonging to ⲉ-tube can be adjusted with ν. Experiments are performed to compare the accuracy of various kernel functions such as linear, polynomial. RBF (radialbasis function), sigmoid, The best result isthe use of the RBF kernel in all cases

Research on prediction and analysis of supercritical water heat transfer coefficient based on support vector machine

  • Ma Dongliang;Li Yi;Zhou Tao;Huang Yanping
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4102-4111
    • /
    • 2023
  • In order to better perform thermal hydraulic calculation and analysis of supercritical water reactor, based on the experimental data of supercritical water, the model training and predictive analysis of the heat transfer coefficient of supercritical water were carried out by using the support vector machine (SVM) algorithm. The changes in the prediction accuracy of the supercritical water heat transfer coefficient are analyzed by the changes of the regularization penalty parameter C, the slack variable epsilon and the Gaussian kernel function parameter gamma. The predicted value of the SVM model obtained after parameter optimization and the actual experimental test data are analyzed for data verification. The research results show that: the normalization of the data has a great influence on the prediction results. The slack variable has a relatively small influence on the accuracy change range of the predicted heat transfer coefficient. The change of gamma has the greatest impact on the accuracy of the heat transfer coefficient. Compared with the calculation results of traditional empirical formula methods, the trained algorithm model using SVM has smaller average error and standard deviations. Using the SVM trained algorithm model, the heat transfer coefficient of supercritical water can be effectively predicted and analyzed.

Suggestion for Spatialization of Environmental Planning Using Spatial Optimization Model (공간최적화 모델을 활용한 환경계획의 공간화 방안)

  • Yoon, Eun-Joo;Lee, Dong-Kun;Heo, Han-Kyul;Sung, Hyun-Chan
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.21 no.2
    • /
    • pp.27-38
    • /
    • 2018
  • Environmental planning includes resource allocation and spatial planning process for the conservation and management of environment. Because the spatialization of the environmental planning is not specifically addressed in the relevant statutes, it actually depends on the qualitative methodology such as expert judgement. The results of the qualitative methodology have the advantage that the accumulated knowledge and intuition of the experts can be utilized. However, it is difficult to objectively judge whether it is enough to solve the original problem or whether it is the best of the possible scenarios. Therefore, this study proposed a methodology to quantitatively and objectively spatialize various environmental planning. At first, we suggested a quantitative spatial planning model based on an optimization algorithm. Secondly, we applied this model to two kinds of environmental planning and discussed about the model performance to present the applicability. Since the models were developed based on conceptual study site, there was a limitation in showing possibility of practical use. However, we expected that this study can contribute to the fields related to environmental planning by suggesting flexible and novel methodology.

Concept Optimization for Mechanical Product Using Genetic Algorithm

  • Huang Hong Zhong;Bo Rui Feng;Fan Xiang Feng
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.1072-1079
    • /
    • 2005
  • Conceptual design is the first step in the overall process of product design. Its intrinsic uncertainty, imprecision, and lack of information lead to the fact that current conceptual design activities in engineering have not been computerized and very few CAD systems are available to support conceptual design. In most of the current intelligent design systems, approach of principle synthesis, such as morphology matrix, bond graphic, or design catalogues, is usually adopted to deal with the concept generation, in which optional concepts are generally combined and enumerated through function analysis. However, as a large number of concepts are generated, it is difficult to evaluate and optimize these design candidates using regular algorithm. It is necessary to develop a new approach or a tool to solve the concept generation. Generally speaking, concept generation is a problem of concept synthesis. In substance, this process of developing design candidate is a combinatorial optimization process, viz., the process of concept generation can be regarded as a solution for a state-place composed of multi-concepts. In this paper, genetic algorithm is utilized as a feasible tool to solve the problem of combinatorial optimization in concept generation, in which the encoding method of morphology matrix based on function analysis is applied, and a sequence of optimal concepts are generated through the search and iterative process which is controlled by genetic operators, including selection, crossover, mutation, and reproduction in GA. Several crucial problems on GA are discussed in this paper, such as the calculation of fitness value and the criteria for heredity termination, which have a heavy effect on selection of better concepts. The feasibility and intellectualization of the proposed approach are demonstrated with an engineering case. In this work concept generation is implemented using GA, which can facilitate not only generating several better concepts, but also selecting the best concept. Thus optimal concepts can be conveniently developed and design efficiency can be greatly improved.

Bayesian Optimization Framework for Improved Cross-Version Defect Prediction (향상된 교차 버전 결함 예측을 위한 베이지안 최적화 프레임워크)

  • Choi, Jeongwhan;Ryu, Duksan
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.9
    • /
    • pp.339-348
    • /
    • 2021
  • In recent software defect prediction research, defect prediction between cross projects and cross-version projects are actively studied. Cross-version defect prediction studies assume WP(Within-Project) so far. However, in the CV(Cross-Version) environment, the previous work does not consider the distribution difference between project versions is important. In this study, we propose an automated Bayesian optimization framework that considers distribution differences between different versions. Through this, it automatically selects whether to perform transfer learning according to the difference in distribution. This framework is a technique that optimizes the distribution difference between versions, transfer learning, and hyper-parameters of the classifier. We confirmed that the method of automatically selecting whether to perform transfer learning based on the distribution difference is effective through experiments. Moreover, we can see that using our optimization framework is effective in improving performance and, as a result, can reduce software inspection effort. This is expected to support practical quality assurance activities for new version projects in a cross-version project environment.

Performance Optimization and Analysis on P2P Mobile Communication Systems Accelerated by MEC Servers

  • Liang, Xuesong;Wu, Yongpeng;Huang, Yujin;Ng, Derrick Wing Kwan;Li, Pei;Yao, Yingbiao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.1
    • /
    • pp.188-210
    • /
    • 2022
  • As a promising technique to support tremendous numbers of Internet of Things devices and a variety of applications efficiently, mobile edge computing (MEC) has attracted extensive studies recently. In this paper, we consider a MEC-assisted peer-to-peer (P2P) mobile communication system where MEC servers are deployed at access points to accelerate the communication process between mobile terminals. To capture the tradeoff between the time delay and the energy consumption of the system, a cost function is introduced to facilitate the optimization of the computation and communication resources. The formulated optimization problem is non-convex and is tackled by an iterative block coordinate descent algorithm that decouples the original optimization problem into two subproblems and alternately optimizes the computation and communication resources. Moreover, the MEC-assisted P2P communication system is compared with the conventional P2P communication system, then a condition is provided in closed-form expression when the MEC-assisted P2P communication system performs better. Simulation results show that the advantage of this system is enhanced when the computing capability of the receiver increases whereas it is reduced when the computing capability of the transmitter increases. In addition, the performance of this system is significantly improved when the signal-to-noise ratio of hop-1 exceeds that of hop-2.

Manufacturing Data Aggregation System Design for Applying Supply Chain Optimization Technology (공급망 최적화 기술 적용을 위한 제조 데이터 수집 시스템)

  • Hwang, Jae-Yong;Shin, Seong-Yoon;Kang, Sun-Kyoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.11
    • /
    • pp.1525-1530
    • /
    • 2021
  • By applying AI-based efficient inventory management and logistics optimization technology using the smart factory's production plan and manufacturing data, the company's productivity improvement and customer satisfaction can be expected to increase. In this paper, we proposed a system that collects data from the factory's production process, stores it in the cloud, and uses the manufacturing data stored there to apply AI-based supply chain optimization technology later. While the existing system supported approximately 10 to 20 data types, the proposed system is designed and developed to support more than 100 data types. In addition, in the case of the collection cycle, data can be collected 1-2 times per second, and data collection in TB units is possible. Therefore This system is designed to be applied to the existing factory of past in addition to the smart factory.

An Analysis of the Importance of the Success Factors in Operation Stage of ERP System (ERP 시스템의 운영단계의 성공요인에 대한 중요도 분석)

  • Yi, Seon Gyu
    • Journal of Service Research and Studies
    • /
    • v.6 no.4
    • /
    • pp.35-45
    • /
    • 2016
  • This study derives the critical success factors through discussion of expert group in operation stage of ERP system that is suggested by the prior study. Relative importance of the derived critical success factors are analyzed using Analytic Hierarchy Process(AHP). In the first layer of the hierarchy, organizational/ human resource factors are appeared to be the most important factors. In the second layer of the hierarchy, CEO support is evaluated as the most important success factor considering the weight of the 1st layer of the hierarchy followed by process optimization, change management, support of the operation department, and maintenance of process innovation organization. This study suggests that, in order to maximize the introducing effect, continuous support and attention of management is not the only requirement. Proper change management to handle the internal environment change caused by the introduction of the ERP system, support of operation department dedicated to ERP system, and separate department for continuous innovation of process are also required.

A Study on Heavy Rainfall Guidance Realized with the Aid of Neuro-Fuzzy and SVR Algorithm Using AWS Data (AWS자료 기반 SVR과 뉴로-퍼지 알고리즘 구현 호우주의보 가이던스 연구)

  • Kim, Hyun-Myung;Oh, Sung-Kwun;Kim, Yong-Hyuk;Lee, Yong-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.4
    • /
    • pp.526-533
    • /
    • 2014
  • In this study, we introduce design methodology to develop a guidance for issuing heavy rainfall warning by using both RBFNNs(Radial basis function neural networks) and SVR(Support vector regression) model, and then carry out the comparative studies between two pattern classifiers. Individual classifiers are designed as architecture realized with the aid of optimization and pre-processing algorithm. Because the predictive performance of the existing heavy rainfall forecast system is commonly affected from diverse processing techniques of meteorological data, under-sampling method as the pre-processing method of input data is used, and also data discretization and feature extraction method for SVR and FCM clustering and PSO method for RBFNNs are exploited respectively. The observed data, AWS(Automatic weather wtation), supplied from KMA(korea meteorological administration), is used for training and testing of the proposed classifiers. The proposed classifiers offer the related information to issue a heavy rain warning in advance before 1 to 3 hours by using the selected meteorological data and the cumulated precipitation amount accumulated for 1 to 12 hours from AWS data. For performance evaluation of each classifier, ETS(Equitable Threat Score) method is used as standard verification method for predictive ability. Through the comparative studies of two classifiers, neuro-fuzzy method is effectively used for improved performance and to show stable predictive result of guidance to issue heavy rainfall warning.

An Improved Route Optimization Algorithm for RMTP Support in the NEMO Environment (NEMO 환경에서 RMTP를 지원하기 위한 개선된 경로 최적화 알고리즘)

  • Joe, In-Whee;Kim, Jae-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.1A
    • /
    • pp.67-72
    • /
    • 2011
  • There are lots of researches for mobility of MS(mobile station) in All IP based network. Specially, NEMO(NEwork MObility) is not supporting mobility of each MS but supporting mobility of network that include group of MS. Some research try to overcome limitation of wireless with the protocol in wired state and it maintains the performance such as wire environment. There are no researches about multicast with reliability in NEMO. Therefore, this paper suggests efficient algorithm to solve problems when RMTP(Reliable Multicast Transport Protocol) apply to NEMO environment to support high reliability with multicast. And this paper shows the better performance of proposed algorithm for delay and transmission rate between AR and TLMR comparing with RMTP in NEMO.