• Title/Summary/Keyword: supervisory control theory

Search Result 22, Processing Time 0.021 seconds

A Comparison of Decentralized and Partially Observed Supervisors: Application to a CIM Testbed (분산 감독제어기와 부분관측 감독제어기의 비교: CIM Testbed 응용)

  • Son, Hyoung-Il;Lee, Suk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.11
    • /
    • pp.1155-1164
    • /
    • 2008
  • Supervisory control theory, which was first proposed by Ramadge and Wonahm, is a well-suited control theory for the control of complex systems such as semiconductor manufacturing systems, automobile manufacturing systems, and chemical processes because these are better modeled by discrete event models than by differential or difference equation models at higher levels of abstraction. Moreover, decentralized supervisory control is an efficient method for large complex systems according to the divide-and-conquer principle. Decentralized supervisors cannot observe the events those of which occur only within the other supervisors. Therefore decentralized supervisors can be designed according to supervisory control theory under partial observation. This paper presents a solution and a design procedure of supervisory control problem (SCP) for the case of decentralized control and SCP under partial observation (SCPPO). We apply the proposed design procedure to an experimental CIM Testbed. And we compare and analyze the designed decentralized supervisors and partially observed supervisors.

New Modularization Method to Design Supervisory Control of Automated Laboratory Systems (자동화 시스템의 관리제어 설계를 위한 새로운 모듈화 기법)

  • Jung, Taeyoung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.1
    • /
    • pp.38-47
    • /
    • 2014
  • This paper describes the application of discrete event systems theory to the design of an automated laboratory system. Current automated laboratory systems typically consist of several interacting processes that must be carefully sequenced to avoid any possible process conflicts. Discrete Event Systems (DES) theory and Supervisory Control Theory (SCT) can be applied together as effective methods of modeling the system dynamics and designing supervisory controllers to precisely sequence the many processes that such systems might involve. Classical approaches to supervisory controller design tend to result in complex controller structures that are difficult to implement, maintain, and upgrade. In this paper, a new approach to designing supervisory controllers for automated laboratory systems is introduced. This new approach uses a modular controller structure that is easier to implement, maintain, and upgrade, and deals with "state explosion" issues in a novel and efficient way.

App]ication of Supervisory Control Theory to Modeling and Control of a Fleet of Mobile Robots (다중이동로봇의 모델링 및 제어를 위한 관리제어이론의 응용에 관한 연구)

  • 신성영;조광현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.59-59
    • /
    • 2000
  • In this paper, we present a framework for modeling and control of multiple mobile robots which cowork within a bounded workspace and limited resources. To achieve this goal, we adopt a formalism of discrete event system and supervisory control theory based on Petri nets. We can divide our whole story into two parts: first, we search the shortest path using the distance vector algorithm, and then we construct the control scheme from which a number of mobile robots can work within a bounded workspace without any collision. The use of Petri net modeling allows us In synthesize a controller which achieves a control specification for the desired closed-loop behavior efficiently. Finally, the usefulness of the proposed Petri net formalism is illustrated by a simulation study.

  • PDF

Stability Analysis of Competitive Markets by Supervisory Control Theory (관리제어이론을 이용한 경쟁시장의 안정성 해석)

  • Park, Seong-Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.11
    • /
    • pp.1025-1028
    • /
    • 2010
  • This paper presents a new approach to analyze the stability of dynamic competitive markets within the framework of supervisory control of discrete event systems. A competitive market is representative of free market economy where it is well known that an invisible hand (also referred to as Walrasian auctioneer) always achieves an equilibrium of demand and supply. Upon the framework of supervisory control theory, this paper shows that Walrasian auctioneer is a stabilizing supervisor for a convergent competitive market, however a non-convergent competitive market (e.g. a free market under economic bubble and depression) controlled by Walrasian auctioneer may not be stable.

Supervisory Control of Dynamic Oligopolistic Markets: How can Firms Reach Profit-Maximization? (동적 과점시장의 관리제어: 기업들은 어떻게 이윤극대화에 이를 수 있는가?)

  • Park, Seong-Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.4
    • /
    • pp.304-312
    • /
    • 2011
  • In an oligopolistic market, only a few firms account for most or all of total production, e.g., automobile, steel, and computer industries. For a dynamic oligopolistic market with two firms competing in quantities, we show that supervisory control theory of discrete event systems provides a novel approach to solve the dynamic oligopoly problem with the aim of maximizing the profits of both firms. Specifically, we show that the controllability, observability, and nonblocking property (which are the core concepts in supervisory control theory) are the necessary and sufficient conditions for two oligopolistic firms in disequilibrium to eventually reach equilibrium states of maximizing the profits of both firms.

Design and Specification of a Low-Level Control Software for an FMC Using Supervisory Control Theory

  • Kim, Sang-Kyun;Park, Jong-Hun;Park, Namkyu;Park, Jin-Woo
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.20 no.2
    • /
    • pp.159-178
    • /
    • 1995
  • Supervisory control is an approach based on formal language. it is used to model and control discrete event systems in which each discrete event process is represented as an automation. A supervisor is a generator that switches control patterns in such a way that a given discrete evenet process behaves in obedience to various constraints. A flexible manufacturing cell (FMC) is one of discrete evenet systems. Functions necessary for the operation of an FMC are characterized by operational components and informational compoments. The operational components can be modeled using the finite state machines and the informational components can be modeled using the abstract formalism which describes supporting operations of the cell controller. In this paper, we addressed function required for FMC control specification, software engineering aspects on FMC control based on supervisory control, a concept of event queue for resolving synchronization problem, and complexity reduction. Based on the mathematical model of an FMC. we synthesized the controller by integrating a supervisor for FMC with control specification that specifies event-driven operation of the cell controller. The proposed control scheme is stable mathematically so that the system always behaves on a controlled way even under the existence of uncontrollable events. Furthermore, using an event queue concept, we can solve a synchronization problem caused by the violation of instantaneity assumption of supervisory control theory in real life situation. And also, we can propotype a control software rapidly due to the modularity of the proposed control scheme.

  • PDF

DES Approach Failure Diagnosis of Pump-valve System (펌프-밸브 시스템의 DES 접근론적 Failure Diagnosis)

  • Son, Hyung-Il;Kim, Ki-Woong;Lee, Seok
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.643-646
    • /
    • 2000
  • As many industrial systems become more complex, it becomes extremely difficult to diagnose the cause of failures. This paper presents a failure diagnosis approach based on discrete event system theory. In particular, the approach is a hybrid of event-based and state-based ones leading to a simpler failure diagnoser with supervisory control capability. The design procedure is presented along with a pump-valve system as an example.

  • PDF

Key Distribution Process for Encryption of SCADA Communication using Game Theory applied Multiagent System

  • Kim, Hak-Man;Kang, Dong-Joo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.11
    • /
    • pp.34-43
    • /
    • 2009
  • SCADA (Supervisory Control and Data Acquisition) system has been used for remote measurement and control on the critical infrastructures as well as modem industrial facilities. As cyber attacks increase on communication networks, SCADA network has been also exposed to cyber security problems. Especially, SCADA systems of energy industry such as electric power, gas and oil are vulnerable to targeted cyber attack and terrorism Recently, many research efforts to solve the problems have made progress on SCADA network security. In this paper, flexible key distribution concept is proposed for improving the security of SCADA network using Multiagent System (MAS).