• Title/Summary/Keyword: supervised training

Search Result 310, Processing Time 0.024 seconds

A study for Improvement the Accuracy of Tree Species Classification within Various Sizes of Training Sample Areas by Using the High-resolution Images (고해상도 영상을 이용한 샘플영역의 크기별 수종분류 정확도 향상을 위한 연구)

  • Hou, Jin Sung;Yang, Keum Chul
    • Journal of Wetlands Research
    • /
    • v.16 no.3
    • /
    • pp.393-401
    • /
    • 2014
  • The purpose of this study was to investigate the objective impact in accuracy and reliability with tendency depend on training samples by using the high-resolution images. Supervised classification was performed based on multi-spectral images which made by each satellite and aerial images for considering all of bands' characteristics. The highest accuracy was 84.7% with satellite image(3*3) and 83% with aerial image(5*5) at the accuracy verification phase. Also, the overall accuracy with the consideration of Kappa coefficient were 0.84 for satellite images and 0.82 for aerial images. In all of the images, the smaller training sample was, the higher accuracy showed. Therefore, tree species classification accuracy was tended to rely on training sample size.

Multi-view Semi-supervised Learning-based 3D Human Pose Estimation (다시점 준지도 학습 기반 3차원 휴먼 자세 추정)

  • Kim, Do Yeop;Chang, Ju Yong
    • Journal of Broadcast Engineering
    • /
    • v.27 no.2
    • /
    • pp.174-184
    • /
    • 2022
  • 3D human pose estimation models can be classified into a multi-view model and a single-view model. In general, the multi-view model shows superior pose estimation performance compared to the single-view model. In the case of the single-view model, the improvement of the 3D pose estimation performance requires a large amount of training data. However, it is not easy to obtain annotations for training 3D pose estimation models. To address this problem, we propose a method to generate pseudo ground-truths of multi-view human pose data from a multi-view model and exploit the resultant pseudo ground-truths to train a single-view model. In addition, we propose a multi-view consistency loss function that considers the consistency of poses estimated from multi-view images, showing that the proposed loss helps the effective training of single-view models. Experiments using Human3.6M and MPI-INF-3DHP datasets show that the proposed method is effective for training single-view 3D human pose estimation models.

3D Cross-Modal Retrieval Using Noisy Center Loss and SimSiam for Small Batch Training

  • Yeon-Seung Choo;Boeun Kim;Hyun-Sik Kim;Yong-Suk Park
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.3
    • /
    • pp.670-684
    • /
    • 2024
  • 3D Cross-Modal Retrieval (3DCMR) is a task that retrieves 3D objects regardless of modalities, such as images, meshes, and point clouds. One of the most prominent methods used for 3DCMR is the Cross-Modal Center Loss Function (CLF) which applies the conventional center loss strategy for 3D cross-modal search and retrieval. Since CLF is based on center loss, the center features in CLF are also susceptible to subtle changes in hyperparameters and external inferences. For instance, performance degradation is observed when the batch size is too small. Furthermore, the Mean Squared Error (MSE) used in CLF is unable to adapt to changes in batch size and is vulnerable to data variations that occur during actual inference due to the use of simple Euclidean distance between multi-modal features. To address the problems that arise from small batch training, we propose a Noisy Center Loss (NCL) method to estimate the optimal center features. In addition, we apply the simple Siamese representation learning method (SimSiam) during optimal center feature estimation to compare projected features, making the proposed method robust to changes in batch size and variations in data. As a result, the proposed approach demonstrates improved performance in ModelNet40 dataset compared to the conventional methods.

Text Classification with Heterogeneous Data Using Multiple Self-Training Classifiers

  • William Xiu Shun Wong;Donghoon Lee;Namgyu Kim
    • Asia pacific journal of information systems
    • /
    • v.29 no.4
    • /
    • pp.789-816
    • /
    • 2019
  • Text classification is a challenging task, especially when dealing with a huge amount of text data. The performance of a classification model can be varied depending on what type of words contained in the document corpus and what type of features generated for classification. Aside from proposing a new modified version of the existing algorithm or creating a new algorithm, we attempt to modify the use of data. The classifier performance is usually affected by the quality of learning data as the classifier is built based on these training data. We assume that the data from different domains might have different characteristics of noise, which can be utilized in the process of learning the classifier. Therefore, we attempt to enhance the robustness of the classifier by injecting the heterogeneous data artificially into the learning process in order to improve the classification accuracy. Semi-supervised approach was applied for utilizing the heterogeneous data in the process of learning the document classifier. However, the performance of document classifier might be degraded by the unlabeled data. Therefore, we further proposed an algorithm to extract only the documents that contribute to the accuracy improvement of the classifier.

TEACHING POWER ELECTRONICS AT MONASH UNIVERSITY IN AN AUSTRALIAN CONTEXT

  • Freere, Peter
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.219-224
    • /
    • 1998
  • A Summary is given of conventional electrical engineering university education and a description of the employment scene for the graduates. The training requirements of graduates for three different industrial employers are given and the steps taken to meet some of these requirements are explained in detail. The steps taken include tow training programmes, one an undergraduate final year course and the other a graduate training programme. The final year course teaches to design and construct a real product to specifications, whereas the graduate training programme employs a new graduate or postgraduate student on industrial projects which can be closely supervised for maximum benefit. Both programmes are described in detail and the conclusion developed as to future requirements.

  • PDF

Training Method and Speaker Verification Measures for Recurrent Neural Network based Speaker Verification System

  • Kim, Tae-Hyung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.3C
    • /
    • pp.257-267
    • /
    • 2009
  • This paper presents a training method for neural networks and the employment of MSE (mean scare error) values as the basis of a decision regarding the identity claim of a speaker in a recurrent neural networks based speaker verification system. Recurrent neural networks (RNNs) are employed to capture temporally dynamic characteristics of speech signal. In the process of supervised learning for RNNs, target outputs are automatically generated and the generated target outputs are made to represent the temporal variation of input speech sounds. To increase the capability of discriminating between the true speaker and an impostor, a discriminative training method for RNNs is presented. This paper shows the use and the effectiveness of the MSE value, which is obtained from the Euclidean distance between the target outputs and the outputs of networks for test speech sounds of a speaker, as the basis of speaker verification. In terms of equal error rates, results of experiments, which have been performed using the Korean speech database, show that the proposed speaker verification system exhibits better performance than a conventional hidden Markov model based speaker verification system.

Severity-based Fault Prediction using Unsupervised Learning (비감독형 학습 기법을 사용한 심각도 기반 결함 예측)

  • Hong, Euyseok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.3
    • /
    • pp.151-157
    • /
    • 2018
  • Most previous studies of software fault prediction have focused on supervised learning models for binary classification that determines whether an input module has faults or not. However, binary classification model determines only the presence or absence of faults in the module without considering the complex characteristics of the fault, and supervised model has the limitation that it requires a training data set that most development groups do not have. To solve these two problems, this paper proposes severity-based ternary classification model using unsupervised learning algorithms, and experimental results show that the proposed model has comparable performance to the supervised models.

Decoding Brain States during Auditory Perception by Supervising Unsupervised Learning

  • Porbadnigk, Anne K.;Gornitz, Nico;Kloft, Marius;Muller, Klaus-Robert
    • Journal of Computing Science and Engineering
    • /
    • v.7 no.2
    • /
    • pp.112-121
    • /
    • 2013
  • The last years have seen a rise of interest in using electroencephalography-based brain computer interfacing methodology for investigating non-medical questions, beyond the purpose of communication and control. One of these novel applications is to examine how signal quality is being processed neurally, which is of particular interest for industry, besides providing neuroscientific insights. As for most behavioral experiments in the neurosciences, the assessment of a given stimulus by a subject is required. Based on an EEG study on speech quality of phonemes, we will first discuss the information contained in the neural correlate of this judgement. Typically, this is done by analyzing the data along behavioral responses/labels. However, participants in such complex experiments often guess at the threshold of perception. This leads to labels that are only partly correct, and oftentimes random, which is a problematic scenario for using supervised learning. Therefore, we propose a novel supervised-unsupervised learning scheme, which aims to differentiate true labels from random ones in a data-driven way. We show that this approach provides a more crisp view of the brain states that experimenters are looking for, besides discovering additional brain states to which the classical analysis is blind.

Object Classification based on Weakly Supervised E2LSH and Saliency map Weighting

  • Zhao, Yongwei;Li, Bicheng;Liu, Xin;Ke, Shengcai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.1
    • /
    • pp.364-380
    • /
    • 2016
  • The most popular approach in object classification is based on the bag of visual-words model, which has several fundamental problems that restricting the performance of this method, such as low time efficiency, the synonym and polysemy of visual words, and the lack of spatial information between visual words. In view of this, an object classification based on weakly supervised E2LSH and saliency map weighting is proposed. Firstly, E2LSH (Exact Euclidean Locality Sensitive Hashing) is employed to generate a group of weakly randomized visual dictionary by clustering SIFT features of the training dataset, and the selecting process of hash functions is effectively supervised inspired by the random forest ideas to reduce the randomcity of E2LSH. Secondly, graph-based visual saliency (GBVS) algorithm is applied to detect the saliency map of different images and weight the visual words according to the saliency prior. Finally, saliency map weighted visual language model is carried out to accomplish object classification. Experimental results datasets of Pascal 2007 and Caltech-256 indicate that the distinguishability of objects is effectively improved and our method is superior to the state-of-the-art object classification methods.

Patch based Semi-supervised Linear Regression for Face Recognition

  • Ding, Yuhua;Liu, Fan;Rui, Ting;Tang, Zhenmin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.8
    • /
    • pp.3962-3980
    • /
    • 2019
  • To deal with single sample face recognition, this paper presents a patch based semi-supervised linear regression (PSLR) algorithm, which draws facial variation information from unlabeled samples. Each facial image is divided into overlapped patches, and a regression model with mapping matrix will be constructed on each patch. Then, we adjust these matrices by mapping unlabeled patches to $[1,1,{\cdots},1]^T$. The solutions of all the mapping matrices are integrated into an overall objective function, which uses ${\ell}_{2,1}$-norm minimization constraints to improve discrimination ability of mapping matrices and reduce the impact of noise. After mapping matrices are computed, we adopt majority-voting strategy to classify the probe samples. To further learn the discrimination information between probe samples and obtain more robust mapping matrices, we also propose a multistage PSLR (MPSLR) algorithm, which iteratively updates the training dataset by adding those reliably labeled probe samples into it. The effectiveness of our approaches is evaluated using three public facial databases. Experimental results prove that our approaches are robust to illumination, expression and occlusion.