• Title/Summary/Keyword: supervised classification

Search Result 423, Processing Time 0.022 seconds

Filtering Effect in Supervised Classification of Polarimetric Ground Based SAR Images

  • Kang, Moon-Kyung;Kim, Kwang-Eun;Cho, Seong-Jun;Lee, Hoon-Yol;Lee, Jae-Hee
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.6
    • /
    • pp.705-719
    • /
    • 2010
  • We investigated the speckle filtering effect in supervised classification of the C-band polarimetric Ground Based SAR image data. Wishart classification method was used for the supervised classification of the polarimetric GB-SAR image data and total of 6 kinds of speckle filters were applied before supervised classification, which are boxcar, Gaussian, Lopez, IDAN, the refined Lee, and the refined Lee sigma filters. For each filters, we changed the filtering kernel size from $3{\times}3$ to $9{\times}9$ to investigate the filtering size effect also. The refined Lee filter with the kernel size of bigger than $5{\times}5$ showed the best result for the Wishart supervised classification of polarimetric GB-SAR image data. The result also showed that the type of trees could be discriminated by Wishart supervised classification of polarimetric GB-SAR image data.

The use of support vector machines in semi-supervised classification

  • Bae, Hyunjoo;Kim, Hyungwoo;Shin, Seung Jun
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.2
    • /
    • pp.193-202
    • /
    • 2022
  • Semi-supervised learning has gained significant attention in recent applications. In this article, we provide a selective overview of popular semi-supervised methods and then propose a simple but effective algorithm for semi-supervised classification using support vector machines (SVM), one of the most popular binary classifiers in a machine learning community. The idea is simple as follows. First, we apply the dimension reduction to the unlabeled observations and cluster them to assign labels on the reduced space. SVM is then employed to the combined set of labeled and unlabeled observations to construct a classification rule. The use of SVM enables us to extend it to the nonlinear counterpart via kernel trick. Our numerical experiments under various scenarios demonstrate that the proposed method is promising in semi-supervised classification.

Semi-Supervised SAR Image Classification via Adaptive Threshold Selection (선별적인 임계값 선택을 이용한 준지도 학습의 SAR 분류 기술)

  • Jaejun Do;Minjung Yoo;Jaeseok Lee;Hyoi Moon;Sunok Kim
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.319-328
    • /
    • 2024
  • Semi-supervised learning is a good way to train a classification model using a small number of labeled and large number of unlabeled data. We applied semi-supervised learning to a synthetic aperture radar(SAR) image classification model with a limited number of datasets that are difficult to create. To address the previous difficulties, semi-supervised learning uses a model trained with a small amount of labeled data to generate and learn pseudo labels. Besides, a lot of number of papers use a single fixed threshold to create pseudo labels. In this paper, we present a semi-supervised synthetic aperture radar(SAR) image classification method that applies different thresholds for each class instead of all classes sharing a fixed threshold to improve SAR classification performance with a small number of labeled datasets.

Breast Cancer Classification in Ultrasound Images using Semi-supervised method based on Pseudo-labeling

  • Seokmin Han
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.124-131
    • /
    • 2024
  • Breast cancer classification using ultrasound, while widely employed, faces challenges due to its relatively low predictive value arising from significant overlap in characteristics between benign and malignant lesions, as well as operator-dependency. To alleviate these challenges and reduce dependency on radiologist interpretation, the implementation of automatic breast cancer classification in ultrasound image can be helpful. To deal with this problem, we propose a semi-supervised deep learning framework for breast cancer classification. In the proposed method, we could achieve reasonable performance utilizing less than 50% of the training data for supervised learning in comparison to when we utilized a 100% labeled dataset for training. Though it requires more modification, this methodology may be able to alleviate the time-consuming annotation burden on radiologists by reducing the number of annotation, contributing to a more efficient and effective breast cancer detection process in ultrasound images.

Analyzing the Applicability of Greenhouse Detection Using Image Classification (영상분류에 의한 하우스재배지 탐지 활용성 분석)

  • Sung, Jeung Su;Lee, Sung Soon;Baek, Seung Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.4
    • /
    • pp.397-404
    • /
    • 2012
  • Jeju where concentrates on agriculture and tourism, conversion of outdoor culture into cultivation under structure happens actively for the purpose of increasing profit so continuous examination on house cultivation area is very important for this region. This paper is to suggest the effective image classification method using high resolution satellite image to detect the greenhouse. We carried out classification of greenhouse using the supervised classification and rule-based classification method about Formosat-2 images. Connecting result of two classification try to find accuracy improvement for greenhouse detection. Results about each classification method were calculated the accuracy by comparing with the result of visual detection. As a result, mahalanobis distance among the supervised methods was resulted in the highest detection. Also, it could be checked that detection accuracy was improved by tying with result of supervised method and result of rule-based classification. Therefore, it was expected that effective detection of greenhouse would be feasible if henceforward further study is performed in the process of connecting supervised classification and rule-based classification.

Supervised Classification Using Training Parameters and Prior Probability Generated from VITD - The Case of QuickBird Multispectral Imagery

  • Eo, Yang-Dam;Lee, Gyeong-Wook;Park, Doo-Youl;Park, Wang-Yong;Lee, Chang-No
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.5
    • /
    • pp.517-524
    • /
    • 2008
  • In order to classify an satellite imagery into geospatial features of interest, the supervised classification needs to be trained to distinguish these features through training sampling. However, even though an imagery is classified, different results of classification could be generated according to operator's experience and expertise in training process. Users who practically exploit an classification result to their applications need the research accomplishment for the consistent result as well as the accuracy improvement. The experiment includes the classification results for training process used VITD polygons as a prior probability and training parameter, instead of manual sampling. As results, classification accuracy using VITD polygons as prior probabilities shows the highest results in several methods. The training using unsupervised classification with VITD have produced similar classification results as manual training and/or with prior probability.

Semi-supervised classification with LS-SVM formulation (최소제곱 서포터벡터기계 형태의 준지도분류)

  • Seok, Kyung-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.3
    • /
    • pp.461-470
    • /
    • 2010
  • Semi supervised classification which is a method using labeled and unlabeled data has considerable attention in recent years. Among various methods the graph based manifold regularization is proved to be an attractive method. Least squares support vector machine is gaining a lot of popularities in analyzing nonlinear data. We propose a semi supervised classification algorithm using the least squares support vector machines. The proposed algorithm is based on the manifold regularization. In this paper we show that the proposed method can use unlabeled data efficiently.

Semi-Supervised Learning for Fault Detection and Classification of Plasma Etch Equipment (준지도학습 기반 반도체 공정 이상 상태 감지 및 분류)

  • Lee, Yong Ho;Choi, Jeong Eun;Hong, Sang Jeen
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.4
    • /
    • pp.121-125
    • /
    • 2020
  • With miniaturization of semiconductor, the manufacturing process become more complex, and undetected small changes in the state of the equipment have unexpectedly changed the process results. Fault detection classification (FDC) system that conducts more active data analysis is feasible to achieve more precise manufacturing process control with advanced machine learning method. However, applying machine learning, especially in supervised learning criteria, requires an arduous data labeling process for the construction of machine learning data. In this paper, we propose a semi-supervised learning to minimize the data labeling work for the data preprocessing. We employed equipment status variable identification (SVID) data and optical emission spectroscopy data (OES) in silicon etch with SF6/O2/Ar gas mixture, and the result shows as high as 95.2% of labeling accuracy with the suggested semi-supervised learning algorithm.

The Classifications using by the Merged Imagery from SPOT and LANDSAT

  • Kang, In-Joon;Choi, Hyun;Kim, Hong-Tae;Lee, Jun-Seok;Choi, Chul-Ung
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.262-266
    • /
    • 1999
  • Several commercial companies that plan to provide improved panchromatic and/or multi-spectral remote sensor data in the near future are suggesting that merge datasets will be of significant value. This study evaluated the utility of one major merging process-process components analysis and its inverse. The 6 bands of 30$\times$30m Landsat TM data and the 10$\times$l0m SPOT panchromatic data were used to create a new 10$\times$10m merged data file. For the image classification, 6 bands that is 1st, 2nd, 3rd, 4th, 5th and 7th band may be used in conjunction with supervised classification algorithms except band 6. One of the 7 bands is Band 6 that records thermal IR energy and is rarely used because of its coarse spatial resolution (120m) except being employed in thermal mapping. Because SPOT panchromatic has high resolution it makes 10$\times$10m SPOT panchromatic data be used to classify for the detailed classification. SPOT as the Landsat has acquired hundreds of thousands of images in digital format that are commercially available and are used by scientists in different fields. After the merged, the classifications used supervised classification and neural network. The method of the supervised classification is what used parallelepiped and/or minimum distance and MLC(Maximum Likelihood Classification) The back-propagation in the multi-layer perception is one of the neural network. The used method in this paper is MLC(Maximum Likelihood Classification) of the supervised classification and the back-propagation of the neural network. Later in this research SPOT systems and images are compared with these classification. A comparative analysis of the classifications from the TM and merged SPOT/TM datasets will be resulted in some conclusions.

  • PDF

Supervised Learning-Based Collaborative Filtering Using Market Basket Data for the Cold-Start Problem

  • Hwang, Wook-Yeon;Jun, Chi-Hyuck
    • Industrial Engineering and Management Systems
    • /
    • v.13 no.4
    • /
    • pp.421-431
    • /
    • 2014
  • The market basket data in the form of a binary user-item matrix or a binary item-user matrix can be modelled as a binary classification problem. The binary logistic regression approach tackles the binary classification problem, where principal components are predictor variables. If users or items are sparse in the training data, the binary classification problem can be considered as a cold-start problem. The binary logistic regression approach may not function appropriately if the principal components are inefficient for the cold-start problem. Assuming that the market basket data can also be considered as a special regression problem whose response is either 0 or 1, we propose three supervised learning approaches: random forest regression, random forest classification, and elastic net to tackle the cold-start problem, comparing the performance in a variety of experimental settings. The experimental results show that the proposed supervised learning approaches outperform the conventional approaches.