• Title/Summary/Keyword: superposition-iteration

Search Result 8, Processing Time 0.025 seconds

S-I model of horizontal jet grouting reinforcement for soft soil

  • Zhang, Ning;Li, Zhongyin;Ma, Qingsong;Ma, Tianchi;Niu, Xiaodong;Liu, Xixi;Feng, Tao
    • Geomechanics and Engineering
    • /
    • v.15 no.5
    • /
    • pp.1029-1038
    • /
    • 2018
  • A superposition-iteration (S-I) model is proposed to simulate the jet grouting pre-reinforcing impact for a shallow-buried tunnel. The common model is deduced by theoretical (force equilibrium) analysis and then transformed into the numerical formulation. After applying it to an actual engineering problem, the most obvious deficiency was found to be continuous error accumulation, even when the parameters change slightly. In order to address this problem, a superposition-iteration model is developed based on the basic assumption and superposition theory. First, the additional deflection between two successive excavation steps is determined. This is caused by the disappearance of the supporting force in the excavated zone and the soil pressure in the disturbed zone. Consequently, the final deflection can be obtained by repeatedly superposing the additional deflection to the initial deflection in the previous steps. The analytical solution is then determined with the boundary conditions. The superposition-iteration model is thus established. This model was then applied and found to be suitable for real-life engineering applications. During the calculation, the error induced by the ill-conditioned problem of the matrix is easily addressed. The precision of this model is greater compared to previous models. The sensitivity factors and their impact are determined through this superposition-iteration model.

Nonlinear Wave Interaction of Three Stokes' Waves in Deep Water: Banach Fixed Point Method

  • Jang, Taek-S.;Kwon, S.H.;Kim, Beom-J.
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1950-1960
    • /
    • 2006
  • Based on Banach fixed point theorem, a method to calculate nonlinear superposition for three interacting Stokes' waves is proposed in this paper. A mathematical formulation for the nonlinear superposition in deep water and some numerical solutions were investigated. The authors carried out the numerical study with three progressive linear potentials of different wave numbers and succeeded in solving the nonlinear wave profiles of their three wave-interaction, that is, using only linear wave potentials, it was possible to realize the corresponding nonlinear interacting wave profiles through iteration of the method. The stability of the method for the three interacting Stokes' waves was analyzed. The calculation results, together with Fourier transform, revealed that the iteration made it possible to predict higher-order nonlinear frequencies for three Stokes' waves' interaction. The proposed method has a very fast convergence rate.

A Study on the Numerical Methodologies of Hydroelasticity Analysis for Ship Springing Problem (스프링잉 응답을 위한 유탄성 해석의 수치기법에 대한 연구)

  • Kim, Yoo-Il;Kim, Kyong-Hwan;Kim, Yong-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.3
    • /
    • pp.232-248
    • /
    • 2009
  • Numerical methodology to solve ship springing problem, which is basically fluid-structure interaction problem, was explored in this study. Solution of this hydroelasticity problem was sought by coupling higher order B-spline Rankine panel method and finite element method in time domain, each of which is introduced for fluid and structure domain respectively. Even though varieties of different combinations in terms of numerical scheme are possible and have been tried by many researchers to solve the problem, no systematic study regarding the characteristics of each scheme has been done so far. Here, extensive case studies have been done on the numerical schemes especially focusing on the iteration method, FE analysis of beam-like structure, handling of forward speed problem and so on. Two different iteration scheme, Newton style one and fixed point iteration, were tried in this study and results were compared between the two. For the solution of the FE-based equation of motion, direct integration and modal superposition method were compared with each other from the viewpoint of its efficiency and accuracy. Finally, calculation of second derivative of basis potential, which is difficult to obtain with accuracy within grid-based method like BEM was discussed.

A Study on Bayesian Approach of Software Stochastic Reliability Superposition Model using General Order Statistics (일반 순서 통계량을 이용한 소프트웨어 신뢰확률 중첩모형에 관한 베이지안 접근에 관한 연구)

  • Lee, Byeong-Su;Kim, Hui-Cheol;Baek, Su-Gi;Jeong, Gwan-Hui;Yun, Ju-Yong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.8
    • /
    • pp.2060-2071
    • /
    • 1999
  • The complicate software failure system is defined to the superposition of the points of failure from several component point process. Because the likelihood function is difficulty in computing, we consider Gibbs sampler using iteration sampling based method. For each observed failure epoch, we applied to latent variables that indicates with component of the superposition mode. For model selection, we explored the posterior Bayesian criterion and the sum of relative errors for the comparison simple pattern with superposition model. A numerical example with NHPP simulated data set applies the thinning method proposed by Lewis and Shedler[25] is given, we consider Goel-Okumoto model and Weibull model with GOS, inference of parameter is studied. Using the posterior Bayesian criterion and the sum of relative errors, as we would expect, the superposition model is best on model under diffuse priors.

  • PDF

Finite Element Analysis of Unbalance Response of a High Speed Flexible Polygon Mirror Scanner Motor with Asymmetric Finite Element Equations (비대칭 유한 요소 방정식으로 표현되는 고속 유연 폴리곤 미러 스캐너 모터의 유한 요소 불평형 응답 해석)

  • Seo, Chan-Hee;Jung, Kyung-Moon;Jang, Gun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1022-1027
    • /
    • 2007
  • This paper presents a method to analyze the unbalance response of a high speed polygon mirror scanner motor supported by sintered metal bearing and flexible structures by using the finite element method and the mode superposition method considering the asymmetry of the gyroscopic effect and sintered metal bearing. The eigenvalues and eigenvectors are calculated by solving the eigenvalue problem and the adjoint eigenvalue problem by using the restarted Arnoldi iteration method. The decoupled equations of motion can be obtained from global finite element motion equations by using the orthogonal relation between the right eigenvectors and left eigenvectors. The decoupled equations of motion are used to analyze the unbalance response of a high speed polygon mirror scanner motor. The validity of the proposed method is verified by comparing the simulated unbalance response with the experimental results.

  • PDF

Dynamic Analysis of Building Structures for Subway Transit Loading (지하철운행 하중에 대한 인접 구조물의 진동해석)

  • 윤정방;이동근;정진상;김두기
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.10a
    • /
    • pp.266-273
    • /
    • 1995
  • An efficient dynamic analysis method is developed f3r building structures subjected to ground home loadings. The soil medium is modeled using the finite elements and infinite elements. Then, the dynamic stiffness of the soil medium is calculated at the interfacial nodes between the soil and the building foundation. The equivalent subway loading at the interfacial nodes are obtained from the wave propagation analysis of the subway loading through the soil medium. The dynamic response of the building Is computed using the mode superposition method equipped with gauss-seidel iteration technique. The analysis is carried out by the frequency domain and the time domain methods.

  • PDF

Vibration Damping Analysis of Viscoelastic and Viscoelastically Damped Structures (점탄성 또는 점탄성 감쇠처리된 구조물의 진동 감쇠 해석)

  • 황원재;박진무
    • Journal of KSNVE
    • /
    • v.10 no.1
    • /
    • pp.64-73
    • /
    • 2000
  • We present finite element equations in the Laplace-domain for linear viscoelastic and viscoelstically damped structures governed by a constitutive equation involving factional order derivative opeartors. These equations yield a nonstandard eigenproblem consisted of frequency dependent stiffness matrix. To solve this nonstandard eigenproblem we suggest an eigenvalue iteration procedure in the Laplace-domain. Improved Zenor and GHM material function type constitutive equations in the Laplace-domain are also available for this procedure. From above equations, complex eigenvalues and complex eigenvectors are obtained. Using obtained eigenvalues and eigenvectors, time domain analysis is performed by means of mode superposition. Finally, finite element solutions of viscoelastic and viscoeleastically damped sandwich beam are presented as an example.

  • PDF

Finite Element Analysis of Unbalance Response of a High Speed Flexible Polygon Mirror Scanner Motor Considering the Flexibility of Supporting Structure (지지구조의 유연성을 고려한 고속 유연 폴리곤 미러 스캐너 모터의 유한 요소 불평형 응답 해석)

  • Jung, Kyung-Moon;Seo, Chan-Hee;Kim, Myung-Gyu;Jang, Gun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.859-865
    • /
    • 2007
  • This paper presents a method to analyze the unbalance response of a high speed polygon mirror scanner motor supported by sintered bearing and flexible supporting structures by using the finite element method and the mode superposition method. The appropriate finite element equations for polygon mirror are described by rotating annular sector element using Kirchhoff plate theory and von Karman non-linear strain, and its rigid body motion is also considered. The rotating components except for the polygon mirror are modeled by Timoshenko beam element including the gyroscopic effect. The flexible supporting structures are modeled by using a 4-node tetrahedron element and 4-node shell element with rotational degrees of freedom. Finite element equations of each component of the polygon mirror scanner motor and the flexible supporting structures are consistently derived by satisfying the geometric compatibility in the internal boundary between each component. The rigid link constraints are also imposed at the interface area between sleeve and sintered bearing to describe the physical motion at this interface. A global matrix equation obtained by assembling the finite element equations of each substructure is transformed to a state-space matrix-vector equation, and both damped natural frequencies and modal damping ratios are calculated by solving the associated eigenvalue problem by using the restarted Arnoldi iteration method. Unbalance responses in time and frequency domain are performed by superposing the eigenvalues and eigenvectors from the free vibration analysis. The validity of the proposed method is verified by comparing the simulated unbalance response with the experimental results. This research also shows that the flexibility of supporting structures plays an important role in determining the unbalance response of the polygon mirror scanner motor.

  • PDF