• Title/Summary/Keyword: superplastic

Search Result 108, Processing Time 0.025 seconds

mechanical properties of Al-Cu-Zr alloy parts by superplastic forming (Al-Cu-Zr 합금 초소성 성형품의 기계적 성질)

  • 이영선
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.163-170
    • /
    • 1999
  • Although the bulge forming technique is currently employed in commercial superplastic forming processes, the uniaxial tensile test is still the most commonly used method for the evaluation of the superplasticity of materials due to its simplicity in testing. However, the results obtained from the uniaxial tensile test can not be applied in analyzing the characteristics of the real parts formed in multi-axial stress state. In this paper, using the tensile test specimen obtained from the square cup manufactured by superplastic forming, tensile strength and elongation have been investigated according to the strain and cavity volume fraction. From the result of experiment, tensile strength and elongation are decreased according to the strain and cavity in Al-6%Cu-0.4%Zr alloy. On condition of uniaxial stress, cavity volume fraction is increased on linear according to the increasement of thickness strain. However, on condition of biaxial stress there are critical point( E t=1.5-1.6) that the slope, the ratio of cavity volume fraction and strain, have been changed. Therefore, cavity volume fraction is different with respect to stress condition, although the same strain.

  • PDF

Superplasticity of Magnesium Alloys and SPF Applications (마그네슘합금의 초소성 특성과 응용)

  • Shim, Jae-Dong;Byun, Ji-Young
    • Korean Journal of Materials Research
    • /
    • v.27 no.1
    • /
    • pp.53-61
    • /
    • 2017
  • Magnesium alloys are of emerging interest in the automotive, aerospace and electronic industries due to their light weight, high specific strength, damping capacity, etc. However, practical applications are limited because magnesium alloys have poor formability at room temperature due to the lack of slip systems and the formation of basal texture, both of which characteristics are attributed to the hcp crystal structure. Fortunately, many magnesium alloys, even commercialized AZ or ZK series alloys, exhibit superplastic behavior and show very large tensile ductility, which means that these materials have potential application to superplastic forming (SPF) of magnesium alloy sheets. The SPF technique offers many advantages such as near net shaping, design flexibility, simple process and low die cost. Superplasticity occurs in materials having very small grain sizes of less than $10{\mu}m$ and these small grains in magnesium alloys can be achieved by thermomechanical treatment in conventional rolling or extrusion processes. Moreover, some coarse-grained magnesium alloys are reported to have superplasticity when grain refinement occurs through recrystallization during deformation in the initial stage. This report reviews the characteristics of superplastic magnesium alloys with high-strain rate and coarse grains. Finally, some examples of SPF application are suggested.

Deformation and Failure Analysis of Heterogeneous Microstructures of Ti-6Al-4V Alloy using Probability Functions (확률함수를 이용한 비균질 Ti-6Al-4V 합금의 변형 및 파손해석)

  • Kim, Tae-Won;Ko, Eun-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.6
    • /
    • pp.685-692
    • /
    • 2004
  • A stochastic approach has been presented for superplastic deformation of Ti-6Al-4V alloy, and probability functions are used to model the heterogeneous phase distributions. The experimentally observed spatial correlation functions are developed, and microstructural evolutions together with superplastic deformation behavior have been investigated by means of the two-point and three-point probability functions. The results have shown that the probability varies approximately linearly with separation distance, and deformation enhanced probability changes during the process. The stress-strain behavior with the evolutions of probability function can be correctly predicted by the model. The finite element implementation using Monte Carlo simulation associated with reconstructed microstructures shows that better agreement with experimental data of failure strain on the test specimen.

Modeling Deformation Behavior of Heterogenous Microstructure of Ti-6AI-4V Alloy using Probability Functions (확률함수를 이용한 비균질 Ti-6Al-4V 합금의 변형거동 모델링)

  • Ko, Eun-Young;Kim, Tae-Won
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.292-297
    • /
    • 2003
  • A stochastic approach has been presented for superplastic deformation of Ti-6AJ-4V alloy, and probability function are used to heterogeneous phase distributions. The experimentally observed spatial correlation function are developed, and microstructural evolutions together with superplastic deformation behavior have investigated by means of the probability function. The result have shown that the probability varies approximately linearly with separation with distance, and significant deformation enhanced probability changes during the deformation. The stress-strain behavior with the evolutions of probability function can be correctly predicted by the model. The finite clement implementation using Monte Carlo simulation associated with phase re-distributions shows that better agreement with experimental data of failure strain on the test specimen.

  • PDF

8090A1-Li 합금의 공동화에 미치는 응력상태 및 정수압의 영향

  • 오관영;최준환;이동녕;이혁모;이종수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.04a
    • /
    • pp.329-334
    • /
    • 1992
  • It has been shown that the application of hydrostatic pressure during superplastic forming of 8090A1 can prevent the cavitaiton normally encountered at atmospheric pressure and cavity growth rate factor .eta. in the plane strain state is greater than that in the equibiaxial stress state. .eta. value shows some difference compared to the theoretical value, which seems to be due to the continuous nucletion and coalescence of voids during superplastic deformation. Scatter of measured data of cavity volume fraction seems to be on preferential nucleation of viods on non-uniformly distributed second phase particles in the deforming matrix.

Non-uniform Failure in Superplastic Ti-6Al-4V Alloy (초소성 Ti-6Al-4V 합금에서의 불균일 파손)

  • 김태원
    • Transactions of Materials Processing
    • /
    • v.9 no.6
    • /
    • pp.663-669
    • /
    • 2000
  • A material model has been presented, at the continuum level, for the representation of superplastic deformation coupled with microstructural evolution. The model presented enables the effects of the spatial variation of distributions of grain size to be predicted at the process level. The model has been tested under conditions of both homogeneous and inhomogeneous stress and strain by carrying out detailed comparison of predicted distributions of grain size and their evolutions with experimentally obtained data. Experimental measurements have shown the extent of the spatial variation of the distribution of grain size that exists in the titanium alloy, Ti-6Al-4V. It is shown that whilst not large, the variations in grain size distributions are sufficient to lead to the development of inhomogeneous deformation in test pieces, which ultimately result in localisation of strain and failure.

  • PDF

Micro Forming of Metallic Micro-parts and Surface Patterns by Employing Vibrational Load (진동 하중을 이용한 마이크로 부품 및 표면 패턴 성형 기술)

  • Na, Y.S.;Lee, J.H.;Lee, W.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.64-67
    • /
    • 2009
  • Vibrational micro-forming of pyramidal shape patterns was conducted for an Al superplastic alloy, Al 5083 and a Zr-based bulk metallic glass, $Zr_{62}Cu_{17}Ni_{13}Al_8$. A vibrational micro-forming system was specially designed for generating vibrational load by combining a PZT actuator with a signal generator. Single crystal Si micro dies with wet-etched pyramidal patterns were used as master dies for vibrational micro-forming. The micro-formed pattern height was increasing with increasing the frequency of the vibrational load. In particular, the vibrationally-microformed pattern height was similar or even higher than the statically-microformed pattern height when the load frequency exceeded about 125 kHz. It was also observed that the crystal grains affect the surface quality of the microformed pattern and the distribution of the pattern height in the die cavity array.

  • PDF