• Title/Summary/Keyword: superplastic

Search Result 108, Processing Time 0.019 seconds

The Effect of Pressure-time Condition Affect in Properties of Superplastic Formed part (압력 조건이 초소성 성형품의 성질에 미치는 영향)

  • Lee, Yeong-Seon;Lee, Jeong-Hwan
    • 연구논문집
    • /
    • s.29
    • /
    • pp.185-194
    • /
    • 1999
  • The shape and thickness distribution according to the pressure-time curve were carried out using the FEM and experiment. Also, mechanical properties were investigated. The square cup parts have been formed with pressure-time curve generated by result of analysis. The tensile strength and elongation have been investigated according to applied pressure conditions using the tensile test specimen obtained from the superplastic formed cup. We can use to predict the shape of formed part under the applied pressure using the FEM analysis. In the case of optimum pressure condition, the thickness distribution and mechanical properties were improved. From this study, we can find the important of optimum pressure-time condition. We have investigated about the forming of airplane part and fuel tank for motorcycle. If the applied load used in boundary conditions was appropriate, the simulation result coincides with the formed part. However, it is very difficult to define the pressure condition in complicated shape. Thus, it is need to develop the optimum pressure condition for superplastic forming.

  • PDF

3-D Finite Element Analysis of Superplastic Forming/Diffusion Bonding Processes with Consideration of Contact between Deformable Bodies (변형체간의 접촉을 고려한 3차원 초소성 성형/확산접합의 유한요소해석)

  • Kang, Yung-Kil;Song, Jae-Sun;Hong, Sung-Suk;Kim, Yong-Hwan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.57-65
    • /
    • 2008
  • Superplastic forming/diffusion bonding(SPF/DB) processes with inner contact were analyzed using a 3-D rigid visco-plastic finite element method. A constant-triangular element based on membrane approximation and an incremental theory of plasticity are employed for the formulation. The hierarchical search algorithm for the contact searching has been applied. The algorithms for contact force processing were designed to handle equally well contact between deformable bodies, as well as rigid bodies. The plate of three and four sheets for 3-D SPF/DB model are analyzed using the developed program. The validity for the analysis is verified by comparison between analysis, experiment and results in the literature.

Superplastic Deformation Characteristics in Powder Metallurgy Al-Li Aluminum Alloy (분말야금 Al-Li 합금의 초소성 변형 특성)

  • 장영원
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.129-130
    • /
    • 1999
  • The superplastic deformation characteristics is powder metallurgy(PM) Al-Li alloy has been studied within the framework of a recently proposed internal variable theory of superplasticity(SSP). The flow curves were obtained by performing a series of load relaxation tests at the temperature range from 45$0^{\circ}C$ to 52$0^{\circ}C$ It has been found that the overall flow curves were separated into the grain boundary sliding(GBS) and the accommodating dislocation glide processes/ The tensile curves were also obtained to clarify the superplastic deformation bahavior of PM Al-Li alloy. The microstructural features of PM AL-Li alloy have been examined through the transmission electron microscopy.

  • PDF

Characterization of superplastic material SPF8090 Al-Li for the strain-rate and the temperature (변형률속도와 온도에 따른 SPF8090 Al-Li 초소성재료의 물성치 평가)

  • Lee, Ki-Seok;Huh, Hoon
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.89-93
    • /
    • 1997
  • A superlastic material, aluminum - lithium alloy 8090, were examined with uniaxial tensile test to investigate its thermomechanical behavior. The tests were carried out at the strain-rates ranging from 2${\times}$10-4 to 1${\times}$10-2 and at the temperatures from 48 0$^{\circ}C$ to 540$^{\circ}C$. The experiments produced force-displacement curves which converted to stress-strain curves. From the curves, several important superplastic factor such as strain-rate sensitivity, optimum strain-rate and strength coefficient were obtained.

  • PDF

A Study on the Effect of Back Pressure on the Superplastic Bulge Forming of Ti-6Al-4V Alloy (Ti-6Al-4V 합금의 초소성 벌지성형에 미치는 배압력의 영향)

  • 송유준;이종수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.175-178
    • /
    • 1997
  • A modified Mukerjee's model considering the microstructural evolution was developed to study the superplastic bulge forming process of Ti-6Al-4V alloy. Through the microstructual observation after deformation, it was found that the grain growth rate of uniaxially tested specimens was different from that of biaxially deformed specimens. From this result, bulge forming experiments with and without back pressure were performed to examine the grain growth behavior and to compare the results of biaxial test with those of triaxial test. Good agreement between the prediction by a modified Mukerjee's model and the experimental measurements was obtained for bulge profile and thickness distribution.

  • PDF

Process Design of Superplastic Forming/Diffusion Bonding by Using Step-by-step Pressurization (단계적 가압을 이용한 초소성 성형/확산접합의 공정설계)

  • Song, J.S.;Kang, Y.K.;Hong, S.S.;Kwon, Y.N.;Lee, J.H.;Kim, Y.H.
    • Transactions of Materials Processing
    • /
    • v.16 no.4 s.94
    • /
    • pp.239-243
    • /
    • 2007
  • Superplastic forming/diffusion bonding(SPF/DB) has been widely used in the automotive and aerospace industry since it has great advantages to produce very light and strong components. Finite element method(FEM) is used to model the SPF/DB process of 3-sheet sandwich panel to predict the pressure-time curve and to analyze the process parameters. In order to eliminate defects of the part, a new pressurization scheme is proposed. Contrary to the conventional one-step pressurization, which causes the folding at the DB joint, two-step pressurization can eliminate the folding. Effect of pressurization cycle was investigated by using FE analysis and proper pressurization cycle is proposed.

3-D Finite Element Analysis of Superplastic Blow Forming (초소성재료의 압력성형에 관한 삼차원 유한요소해석)

  • Lee, Ki-Seok;Huh, Hoon
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.10a
    • /
    • pp.55-63
    • /
    • 1994
  • The analysis of superplastic sheet forming process is studied by the use of the finite element method using a convected coordinate system and a skew boundary condition. In the formulation, the large inelastic behavior of the superplastic material is described as incompressible, nonlinear, viscous flow. The formulation is then approximated to the finite dimensional space with the use of membrane elements, which results in algebraic linear equations. In addition to the finite element formulation, a pressure cycle control algorithm is combined in the analysis for optimization of the forming time, which deals with the maximization of the strain rate sensitivity, the protection of the thickness reduction, the consistency of the desired strain rate and improvement of formability.

  • PDF

Superplastic Forming /Diffusion Bonding Processes Design Using a Finite Element Method (유한요소법을 이용한 초소성 성형/확산접합 공정 설계)

  • 홍성석;이종수;김용환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.03a
    • /
    • pp.155-161
    • /
    • 1995
  • Superplastic forming/diffusion bonding(SPF/DB) processes are analyzed using a rigid visco-plastic finite element method. The optimum pressure-time relationship for a target strain rate and thickness distributions were predicted using two-node line element based on membrane approximation for plane strain shapes. Material behavior during SPF/DB of the integral structures with complicated shapes are investigated. The tying condition is employed for the analysis inter-sheet contact problems. A movement of rib structure is successfully prodicted during the forming.

  • PDF

Theoretical and Microstructural Study on the Temperature Dependence of Superplastic Deformation Behavior (초소성변형거동의 온도의존성에 대한 이론 및 실험적 고찰)

  • 방원규;장영원
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.228-231
    • /
    • 1997
  • A series of load relaxation tests was performed to determine stress-strain rate curves at high temperatures. Constitutive parameters of GBS and GMD were evaluated from the curves using the recently proposed inelastic deformation theory. Tensile tests and Microsturcture investigations showed deformation behavior as the relaxation test results predicted.

  • PDF

Finite Element Analysis of Punch Forming of Superplastic Materials (초소형재료의 펀치성형에 관한 유한요소해석)

  • Huh, Hoon;Lee, Ki-Seok;Choi, Yeong-Jun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.2
    • /
    • pp.440-449
    • /
    • 1996
  • Superplastic punch forming of sheets is simulated by a finite element method to obtain the optimal punch speed and the related deformed shapes. The punch forming has an advantage of guaranteeing the desired accuracy inside a product and controlling the thichness of a deformed sheet more accurately than blow forming. The finit element code developed is associated with the contact algorithm and the control algorithm of punch speed for the optimum forming. The simulation demonstrates that the variation of the thichness in a blank sheet affects the punch speed and the final distribution of the thichness in a product. The analysis proposes that a ring-typed thichness controller is very effective in controlling the thichness of a deformed sheet appropriately.