• Title/Summary/Keyword: superplastic

Search Result 108, Processing Time 0.028 seconds

Ultra-fine Grained Aluminum Alloy Sheets fabricated by Roll Bonding Process

  • Kim, Hyeong-Uk;Tsuji, Nobuhiro
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.6.2-6.2
    • /
    • 2009
  • Ultra-fine grained (UFG) Al alloys, which have submicron grain structures, are expected to show outstanding high strength at ambient temperature and excellent superplastic deformation at elevated temperatures and high strain rate. In order to get the UFG microstructure, various kind of severe plastic deformation (SPD) processes have been developed. Among these processes, accumulative roll bonding (ARB) process is a promising process to make bulky Al sheets with ultrafine grained structure continuously. The purpose of the present study is to clarify the grain refinement mechanism during the ARB process and to investigate on the effects of ultra-fine grained structure on the mechanical properties. In addition, UFG AA8011 alloy (Al-0.72wt%Fe-0.63wt%Si) manufactured by the ARB had fairly large tensile elongation, keeping on the strength. In order to clarify the reason for the increase of elongation in the UFG AA8011 alloy, detailed microstructural and crystallographic analysis was performed by TEM/Kikuchi-line and SEM/EBSP method. The unique tensile properties of the UFG AA8011 alloy could be explained by enhanced dynamic recovery at ambient temperature, owing to the large number of high angle boundaries and the Al matrix with high purity.

  • PDF

Deformation behavior of Copper Amorphous Composites in Super Cooled Liquid Region (과냉각 구간에서 Cu-계 아몰퍼스 복합재의 변형거동)

  • Park E. S.;Kim J. S.;Kim H. J.;Bae J. C.;Huh M. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.279-282
    • /
    • 2005
  • Composites comprising various volume fractions of crystalline nickel and bulk amorphous (BA) were produced by means of electroless coating of nickel on BA powder of $Cu_{54}Ni_6Zr_{22}Ti_{18}$ and subsequent spark plasma sintering (SPS) of coated BA powder. The flow curves of composites at various temperatures in the supercooled liquid region were determined by the uniaxial compression test with various strain rates. During compression at $450^{\circ}C$ with $\dot{\varepsilon}=2\times10^{-3}$, the monolithic BA sample and crystalline-BA composites displayed the superplastic deformation with $\varepsilon>1.4$. At temperatures above $460^{\circ}C$, the stress-strain curve of the monolithic BA sample depicted a sharp peak stress and a fellowing stress drop due to cracking, while those of the crystalline-BA composites displayed work-hardening up to the imposed strain. FEM analysis indicated that a fairly homogeneous strain state prevailed throughout the composite, while a higher level of stress was obtained in a harder BA.

  • PDF

High Temperature Mechanical Properties of Continuous Cast and Extruded ZK60A Alloy (연속주조 압출 ZK60A 합금의 고온 기계적 특성)

  • Ahn, B.
    • Transactions of Materials Processing
    • /
    • v.23 no.3
    • /
    • pp.178-183
    • /
    • 2014
  • Continuous casting is a process where molten metal is solidified into a semi-finished billet on a large scale with either a rectangular or round cross section for subsequent processing. The use of continuous casting provides an opportunity for producing material on a practical industrial scale with lower cost than conventional casting. In the current study, the material was fabricated by continuous casting and subsequent extrusion. Tensile tests were conducted on continuous cast ZK60A after extrusion over a range of strain rates at temperatures from 473K to 623K. The alloy exhibits a quasi-superplastic behavior with a maximum recorded elongation of ~250% at 523K when tested with an initial strain rate of $10^{-5}/s$. The experiments give a strain rate sensitivity exponent of 0.3~0.4 and an activation energy of 108 kJ/mol. From the current investigation, it was found that the high-temperature plastic flow of the ZK60A is controlled by a dislocation viscous glide mechanism.

Synthesis of Al-Ni-Co-Y Bulk Metallic Glass fabricated by Spark Plasma Sintering (방전 플라즈마 소결법을 이용한 Al-Ni-Co-Y 벌크 비정질 합금의 제조)

  • Jeong Pyo Lee;Jin Kyu Lee
    • Journal of Powder Materials
    • /
    • v.30 no.1
    • /
    • pp.41-46
    • /
    • 2023
  • In this study, an Al82Ni7Co3Y8 (at%) bulk metallic glass is fabricated using gas-atomized Al82Ni7Co3Y8 metallic glass powder and subsequent spark plasma sintering (SPS). The effect of powder size on the consolidation of bulk metallic glass is considered by dividing it into 5 ㎛ or less and 20-45 ㎛. The sintered Al82Ni7Co3Y8 bulk metallic glasses exhibit crystallization behavior and crystallization enthalpy similar to those of the Al82Ni7Co3Y8 powder with 5 ㎛ or less and it is confirmed that no crystallization occurred during the sintering process. From these results, we conclude that the Z-position-controlled spark plasma sintering process, using superplastic deformation by viscous flow in the supercooled liquid-phase region of amorphous powder, is an effective process for manufacturing bulk metallic glass.

High temperature deformation behavior of Sc and Misch metal added Al-Mg alloys (Sc과 Misch Metal을 첨가한 Al-Mg 합금의 고온 변형 거동)

  • Woo, K.D.;Rhy, Y.S.;Kim, S.W.;Kim, D.G.;Yang, C.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.17 no.1
    • /
    • pp.23-28
    • /
    • 2004
  • In this work, the effect of Sc and Mm(misch metal) on the high temperature behavior of Al-Mg alloys was observed. Hardness was increased due to appearance of fine $Al_3Sc$ precipitates. The elongation of Al-Mg-Sc alloy at high temperature was higher than that of Al-Mg-Sc-Mm alloy because Al-Mg-Sc alloy has finer grain sizes than Al-Mg-Sc-Mm alloy. The strain rate sensitivity factor, "m" of Al-Mg-Sc and Al-Mg-Sc-Mm at $475^{\circ}C$ and $1{\times}10^{-2}s^{-1}$ were 0.33 and 0.46, respectively. The activation energy of Al-Mg-Sc and Al-Mg-Sc-Mm alloy for superplastic deformation was 133KJ/mol and 103KJ/mol respectively. The elongation of Al-Mg-Sc alloy at high temperature was decreased by the addition of Mm, but the strength at high temperatures and low strain rate was improved.

Study on the Superplasticity in Al-Li Alloy Systems (AI-Li계 합금의 초소성에 관한 연구)

  • Jin, Y.C.;Kook, J.S.;Kim, Y.S.;Hong, E.S.;Lee, M.S.;Lee, M.H.;Yoo, C.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.5 no.1
    • /
    • pp.41-49
    • /
    • 1992
  • The effects of alloying elements on the superplastic properties of Al-Li based alloys had been investigated. The intermediate thermo-mechanical treated (ITMT) Al-2.0wt%Li, Al-2.0wt%Li-1.0wt%Mg, Al-2.0wt%Li-0.12wt%Zr and Al-2.0wt%Li-1.2wt%Cu-1.0wt%Mg-0.12wt%Zr alloys were tested in tension at various temperature (400, 450, 500 and $550^{\circ}C$) and strain rate($6.7{\times}10^{-3}$, $1.0{\times}10^{-2}$, $1.6{\times}10^{-2}$ and $5.0{\times}10^{-2}/sec$). The results were as follows : The superplasticity in binary, ternary and pentanary alloys appeared at 500 to $550^{\circ}C$, and good strain rate for superplasticity. $1.6{\times}10^{-2}/sec{\sim}1.0{\times}10^{-2}/sec$ for a binary alloy and $1.0{\times}10^{-2}/sec{\sim}6.7{\times}10^{-3}/sec$ for ternary and pentanary alloys. A Zr-added ternary alloy had best value of elongation (730%) in four alloys at $550^{\circ}C$ of tension temperature and $1.0{\times}10^{-2}/sec$ of strain rate. The strain rate was greatly dependent on tension temperature and true strain rate was more than 1.0 at all test temperature and strain rate. In binary and Mg-added teranry alloys. the necks were slightly formed and their fracture surface had lips shape, but Zr-added ternary and pentanary alloy fractured along the grain boundary without necking. Their dislocations moved to grain boundary during superplasticity deformation and arranged perpendicular to grain boundary. Super plastic deformation was made by grain boundary slip of dislocation slip creep and model of core and mantle.

  • PDF

A Study on the Passive Vibration Control of Large Scale Solar Array with High Damping Yoke Structure (고댐핑 요크 구조 적용 대형 태양전지판의 수동형 제진에 관한 연구)

  • Park, Jae-Hyeon;Park, Yeon-Hyeok;Park, Sung-Woo;Kang, Soo-Jin;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.5
    • /
    • pp.1-7
    • /
    • 2022
  • Recently, satellites equipped with high-performance electronics have required higher power consumption because of the advancement of satellite missions. For this reason, the size of the solar panel is gradually increasing to meet the required power budget. Increasing the size and weight of the solar panel is one of the factors that induce the elastic vibration of the flexible solar panel during the highly agile maneuvering of the satellite or the mode of vibration coupling to the satellite or the mode of vibration coupling to the micro-jitter from the on-board appendages. Previously, an additional damper system was applied to reduce the elastic vibration of the solar panel, but the increase in size and mass of system was inevitable. In this study, to overcome the abovementioned limitations, we proposed a high -damping yoke structure consisting of a superplastic SMA(Shape Memory Alloy) laminating a thin FR4 layer with viscoelastic tape on both sides. Therefore, this advantage contributes to system simplicity by reducing vibrations with small volume and mass without additional system. The effectiveness of the proposed superelastic SMA multilayer solar panel yoke was validated through free vibration testing and temperature testing using a solar panel dummy.

On-orbit Thermal Characteristic for Multilayered High Damping Yoke Structure Based on Superelastic Shape Memory Alloy for Passive Vibration Control of Solar Panels (태양전지판의 수동형 제진을 위한 초탄성 형상기억합금 기반 적층형 고댐핑 요크 구조의 궤도상 열적 특성 분석)

  • Min-Young Son;Jae-Hyeon Park;Bong-Geon Chae;Sung-Woo Park;Hyun-Ung Oh
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.1
    • /
    • pp.1-10
    • /
    • 2024
  • In a previous study, a structure of a superplastic yoke consisting of a thin FR4 layer laminated with viscoelastic tape on both sides of a shape memory alloy (SMA) was proposed to reduce residual vibration generated by a deployable solar panel during high motion of a satellite. Damping properties of viscoelastic tapes will change with temperature, which can directly affect vibration reduction performance of the yoke. To check damping performance of the yoke at different temperatures, free damping tests were performed under various temperature conditions to identify the temperature range where the damping performance was maximized. Based on above temperature test results, this paper predicts temperature of the yoke through orbital thermal analysis so that the yoke can have effective damping performance even if it is exposed to an orbital thermal environment. In addition, the thermal design method was described so that the yoke could have optimal vibration reduction performance.