• Title/Summary/Keyword: superpixel segmentation

Search Result 22, Processing Time 0.028 seconds

Superpixel-based Apple Leaf Disease Classification using Convolutional Neural Network (합성곱 신경망을 이용하는 수퍼픽셀 기반 사과잎 병충해의 분류)

  • Kim, Manbae;Choi, Changyeol
    • Journal of Broadcast Engineering
    • /
    • v.25 no.2
    • /
    • pp.208-217
    • /
    • 2020
  • The classification of plant diseases by images captured by a camera sensor has been studied over past decades. A method that has gained much interest is to use image segmentation, from which statistical features are derived and analyzed by machine learning. Recently, deep learning has been adopted in this area. However, image segmentation is still a difficult task to achieve stable performance due to a variety of environmental variations. The end-to-end learning in neural network has a demerit that train images may be different from real images acquired in outdoor fields. To solve these problems, we propose superpixel-based disease classification method using end-to-end CNN (convolutional neural network) learning. Based on experiments performed on PlantVillage apple images, the classification accuracy is 98.29% and 92.43% for full-image and superpixel. As well, the multivariate F1-score is (0.98, 0.93). Therefore we validate that the method of using superpixel is comparable to that of full-image.

Improving View-consistency on 4D Light Field Superpixel Segmentation (라이트필드 영상 슈퍼픽셀 분할의 시점간 일관성 개선)

  • Yim, Jonghoon;Duong, Vinh Van;Huu, Thuc Ngyuen;Jeon, Byeungwoo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2021.06a
    • /
    • pp.97-100
    • /
    • 2021
  • Light field (LF) superpixel segmentation aims to group the similar pixels not only in the single image but also in the other views to improve the computational efficiency of further applications like object detection and pattern recognition. Among the state-of-the-art methods, there is an approach to segment the LF images while enforcing the view consistency. However, it leaves too much noise and inaccuracy in the shape of superpixels. In this paper, we modify the process of the clustering step. Experimental results demonstrate that our proposed method outperforms the existing method in terms of view-consistency.

  • PDF

Superpixel-based Vehicle Detection using Plane Normal Vector in Dispar ity Space

  • Seo, Jeonghyun;Sohn, Kwanghoon
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.6
    • /
    • pp.1003-1013
    • /
    • 2016
  • This paper proposes a framework of superpixel-based vehicle detection method using plane normal vector in disparity space. We utilize two common factors for detecting vehicles: Hypothesis Generation (HG) and Hypothesis Verification (HV). At the stage of HG, we set the regions of interest (ROI) by estimating the lane, and track them to reduce computational cost of the overall processes. The image is then divided into compact superpixels, each of which is viewed as a plane composed of the normal vector in disparity space. After that, the representative normal vector is computed at a superpixel-level, which alleviates the well-known problems of conventional color-based and depth-based approaches. Based on the assumption that the central-bottom of the input image is always on the navigable region, the road and obstacle candidates are simultaneously extracted by the plane normal vectors obtained from K-means algorithm. At the stage of HV, the separated obstacle candidates are verified by employing HOG and SVM as for a feature and classifying function, respectively. To achieve this, we trained SVM classifier by HOG features of KITTI training dataset. The experimental results demonstrate that the proposed vehicle detection system outperforms the conventional HOG-based methods qualitatively and quantitatively.

Crab Region Extraction Method from Suncheon Bay Tidal Flat Images (순천만 갯벌 영상에서 게 영역 추출 방법)

  • Park, Sang-Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.6
    • /
    • pp.1197-1206
    • /
    • 2019
  • Suncheon Bay is a very important natural resource and various efforts have been made to protect it from the environmental pollution. Although the project to monitor the environmental changes in periodically by observing the creatures in tidal flats is processing, it is being done inefficiently by people directly observing it. In this paper, we propose an object segmentation method that can be applied to the method to automatically monitor the living creatures in the tidal flats. In the proposed method, a foreground map representing the location of objects is obtained by using a temporal difference method, and a superpixel method is applied to detect the detailed boundary of an image. Finally the region of crab is extracted by combining the foreground map and the superpixel information. Experimental results show that the proposed method separates crab regions from a tidal flat image easily and accurately.

Efficient Superpixel Generation Method Based on Image Complexity

  • Park, Sanghyun
    • Journal of Multimedia Information System
    • /
    • v.7 no.3
    • /
    • pp.197-204
    • /
    • 2020
  • Superpixel methods are widely used in the preprocessing stage as a method to reduce computational complexity by simplifying images while maintaining the characteristics of the images in the computer vision applications. It is common to generate superpixels of similar size and shape based on the pixel values rather than considering the characteristics of the image. In this paper, we propose a method to control the sizes and shapes of generated superpixels, considering the contents of an image. The proposed method consists of two steps. The first step is to over-segment an image so that the boundary information of the image is well preserved. In the second step, generated superpixels are merged based on similarity to produce the target number of superpixels, where the shapes of superpixels are controlled by limiting the maximum size and the proposed roundness metric. Experimental results show that the proposed method preserves the boundaries of the objects in an image more accurately than the existing method.

Inside Wall Frame Detection Method Based on Single Image (단일이미지에 기반한 내벽구조 검출 방법)

  • Jeong, Do-Wook;Jung, Sung-Gi;Choi, Hyung-Il
    • Journal of Internet Computing and Services
    • /
    • v.18 no.1
    • /
    • pp.43-50
    • /
    • 2017
  • In this paper, we are proposing improved vanishing points detection and segments labeling methods for inside wall frame detection from indoor image of a piece of having a colour RGB. A lot of research related to recognizing the frame of artificial structures from the image is being performed due to increase in demand for AR technology. But detect the inside wall frame in indoor images have many objects that caused the occlusion is still a difficult issue. Inner wall frame detection methods are usually segment labeling methods and detect vanishing point methods are used together. In order to improve the vanishing point detection method we proposed using inner wall orthogonality which forms the cube. Also we proposed labeling method using tree based learning and superpixel based segmentation method for labelingthe segments in indoor images. Finally, in experiments have shown improved results about inside wall frame detection according to our methods.

Image Segmentation by Cascaded Superpixel Merging with Privileged Information (단계적 슈퍼픽셀 병합을 통한 이미지 분할 방법에서 특권정보의 활용 방안)

  • Park, Yongjin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.9
    • /
    • pp.1049-1059
    • /
    • 2019
  • We propose a learning-based image segmentation algorithm. Starting from super-pixels, our method learns the probability of merging two regions based on the ground truth made by humans. The learned information is used in determining whether the two regions should be merged or not in a segmentation stage. Unlike exiting learning-based algorithms, we use both local and object information. The local information represents features computed from super-pixels and the object information represent high level information available only in the learning process. The object information is considered as privileged information, and we can use a framework that utilize the privileged information such as SVM+. In experiments on the Berkeley Segmentation Dataset and Benchmark (BSDS 500) and PASCAL Visual Object Classes Challenge (VOC 2012) data set, out model exhibited the best performance with a relatively small training data set and also showed competitive results with a sufficiently large training data set.

A Novel Text Sample Selection Model for Scene Text Detection via Bootstrap Learning

  • Kong, Jun;Sun, Jinhua;Jiang, Min;Hou, Jian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.771-789
    • /
    • 2019
  • Text detection has been a popular research topic in the field of computer vision. It is difficult for prevalent text detection algorithms to avoid the dependence on datasets. To overcome this problem, we proposed a novel unsupervised text detection algorithm inspired by bootstrap learning. Firstly, the text candidate in a novel form of superpixel is proposed to improve the text recall rate by image segmentation. Secondly, we propose a unique text sample selection model (TSSM) to extract text samples from the current image and eliminate database dependency. Specifically, to improve the precision of samples, we combine maximally stable extremal regions (MSERs) and the saliency map to generate sample reference maps with a double threshold scheme. Finally, a multiple kernel boosting method is developed to generate a strong text classifier by combining multiple single kernel SVMs based on the samples selected from TSSM. Experimental results on standard datasets demonstrate that our text detection method is robust to complex backgrounds and multilingual text and shows stable performance on different standard datasets.

Efficient graph-based two-stage superpixel generation method (효율적인 그래프 기반 2단계 슈퍼픽셀 생성 방법)

  • Park, Sanghyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.12
    • /
    • pp.1520-1527
    • /
    • 2019
  • Superpixel methods are widely used in the preprocessing stage as a method to reduce computational complexity by simplifying images while maintaining the characteristics of images in the field of computer vision. It is common to generate superpixels with a regular size and form based on the pixel values rather than considering the characteristics of the image. In this paper, we propose a method to generate superpixels considering the characteristics of an image according to the application. The proposed method consists of two steps, and the first step is to oversegment an image so that the boundary information of the image is well preserved. In the second step, superpixels are merged based on similarity to produce the desired number of superpixels, where the form of superpixels are controlled by limiting the maximum size of superpixels. Experimental results show that the proposed method preserves the boundaries of an image more accurately than the existing method.

A Setting of Initial Cluster Centers and Color Image Segmentation Using Superpixels and Fuzzy C-means(FCM) Algorithm (슈퍼픽셀과 FCM을 이용한 클러스터 초기값 설정 및 칼라영상분할)

  • Lee, Jeong-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.6
    • /
    • pp.761-769
    • /
    • 2012
  • In this paper, a setting method of initial cluster centers and color image segmentation using superpixels and Fuzzy C-means(FCM) algorithm is proposed. Generally, the FCM can be widely used to segment color images, and an element is assigned to any cluster with each membership values in the FCM. However the algorithm has a problem of local convergence by determining the initial cluster centers. So the selection of initial cluster centers is very important, we proposed an effective method to determine the initial cluster centers using superpixels. The superpixels can be obtained by grouping of some pixels having similar characteristics from original image, and it is projected $La^*b^*$ feature space to obtain the initial cluster centers. The proposed method can be speeded up because number of superpixels are extremely smaller than pixels of original image. To evaluate the proposed method, several color images are used for computer simulation, and we know that the proposed method is superior to the conventional algorithm by the experimental results.