• Title/Summary/Keyword: supernova

Search Result 256, Processing Time 0.035 seconds

COSMIC RAY SPECTRUM IN SUPERNOVA REMNANT SHOCKS

  • Kang, Hye-Sung
    • Journal of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.25-39
    • /
    • 2010
  • We perform kinetic simulations of diffusive shock acceleration (DSA) in Type Ia supernova remnants (SNRs) expanding into a uniform interstellar medium (ISM). Bohm-like diffusion due to self-excited $Alfv\acute{e}n$ waves is assumed, and simple models for $Alfv\acute{e}nic$ drift and dissipation are adopted. Phenomenological models for thermal leakage injection are considered as well. We find that the preshock gas temperature is the primary parameter that governs the cosmic ray (CR) acceleration efficiency and energy spectrum, while the CR injection rate is a secondary parameter. For SNRs in the warm ISM of $T_0\lesssim10^5K$, if the injection fraction is $\xi\gtrsim10^{-4}K$, the DSA is efficient enough to convert more than 20% of the SN explosion energy into CRs and the accelerated CR spectrum exhibits a concave curvature flattening to $E^{-1.6}$, which is characteristic of CR modified shocks. Such a flat source spectrum near the knee energy, however, may not be reconciled with the CR spectrum observed at Earth. On the other hand, SNRs in the hot ISM of$T_{0}\approx10^{6}K$ with a small injection fraction, $\xi$<$10^{-4}$, are inefficient accelerators with less than 10% of the explosion energy getting converted to CRs. Also the shock structure is almost test-particle like and the ensuing CR spectrum can be steeper than $E^{-2}$. With amplified magnetic field strength of order of $30{\mu}G$ $Alfv\acute{e}n$ waves generated by the streaming instability may drift upstream fast enough to make the modified test-particle power-law as steep as $E^{-2.3}$, which is more consistent with the observed CR spectrum.

G192.8-1.1: A CANDIDATE OF AN EVOLVED THERMAL COMPOSITE SUPERNOVA REMNANT REIGNITED BY NEARBY MASSIVE STARS

  • Kang, Ji-Hyun;Koo, Bon-Chul;Byun, Do-Young
    • Journal of The Korean Astronomical Society
    • /
    • v.47 no.6
    • /
    • pp.259-277
    • /
    • 2014
  • G192.8-1.1 has been known as one of the faintest supernova remnants (SNRs) in the Galax until the radio continuum of G192.8-1.1 is proved to be thermal by Gao et al. (2011). Yet, the nature of G192.8-1.1 has not been fully investigated. Here, we report the possible discovery of faint non-thermal radio continuum components with a spectral index ${\alpha}{\sim}0.56(S_{\nu}{\propto}{\nu}^{-{\alpha}})$ around G192.8-1.1, while of the radio continuum emission is thermal. Also, our Arecibo $H_I$ data reveal an $H_I$ shell, expanding with an expansion velocity of $20-60km\;s^{-1}$, that has an excellent morphological correlation with the radio continuum emission. The estimated physical parameters of the $H_I$ shell and the possible association of non-thermal radio continuum emission with it suggest G192.8-1.1 to be an~0.3 Myr-old SNR. However, the presence of thermal radio continuum implies the presence of early-type stars in the same region. One possibility is that a massive star is ionizing the interior of an old SNR. If it is the case, the electron distribution assumed by the centrally-peaked surface brightness of thermal emission implies that G192.8-1.1 is a "thermal-composite" SNR, rather than a typical shell-type SNR, where the central hot gas that used to be bright in X-rays has cooled down. Therefore, we propose that G192.8-1.1 is an old evolved thermal-composite SNR showing recurring emission in the radio continuum due to a nearby massive star. The infrared image supports that the $H_I$ shell of G192.8-1.1 is currently encountering a nearby star forming region that possibly contains an early type star(s).

Three-Dimensional Numerical Magnetohydrodynamic Simulations of Magnetic Reconnection in the Interstellar Medium

  • TANUMA SYUNITI;YOKOYAMA TAKAAKI;KUDOH TAKAHIRO;SHIBATA KAZUNARI
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.4
    • /
    • pp.309-311
    • /
    • 2001
  • Strong thermal X-ray emission, called Galactic Ridge X-ray Emission, is observed along the Galactic plane (Koyama et al. 1986). The origin of hot ($\~$7 keV) component of GRXE is not known, while cool ($\~$0.8 keV) one is associated with supernovae (Kaneda et al. 1997, Sugizaki et al. 2001). We propose a possible mechanism to explain the origin; locally strong magnetic fields of $B_{local}\;\~30{\mu}G$ heat interstellar gas to $\~$7 keV via magnetic reconnection (Tanuma et al. 1999). There will be the small-scale (< 10 pc) strong magnetic fields, which can be observed as $(B)_{obs} \;\~3{\mu}G$ by integration of Faraday Rotation Measure, if it is localized by a volume filling factor of f $\~$ 0.1. In order to examine this model, we solved three-dimensional (3D) resistive magnetohydrodynamic (MHD) equations numerically to examine the magnetic reconnect ion triggered by a supernova shock (fig.l). We assume that the magnetic field is Bx = 30tanh(y/20pc) $\mu$G, By = Bz = 0, and the temperature is uniform, at the initial condition. We put a supernova explosion outside the current sheet. The supernova-shock, as a result, triggers the magnetic reconnect ion, and the gas is heatd to > 7 keV. The magnetic reconnect ion heats the interstellar gas to $\~$7 keV in the Galactic plane, if it occurs in the locally strong magnetic fields of $B_{local}\;\~30{\mu}G$. The heated plasma is confined by the magnetic field for $\~10^{5.5} yr$. The required interval of the magnetic reconnect ions (triggered by anything) is $\~$1 - 10 yr. The magnetic reconnect ion will explain the origin of X-rays from the Galactic ridge, furthermore the Galactic halo, and clusters of galaxies.

  • PDF

The X-ray Emission Properties of G308.3-1.4 and Its Central X-ray Sources

  • Seo, Kyoung-Ae;Woo, Yeon-Joo;Hui, Chung-Yue;Huang, Regina Hsiu-Hui;Trepl, Ludwig;Woo, Yeon-Joo;Lu, Tlng-Ni;Kong, Albert Kwok Hing;Walter, Fred M.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.147.2-147.2
    • /
    • 2011
  • We have initiated a long-term identification campaign of supernova remnant candidates in X-ray regime. In the short-listed unidentified sources from the ROSAT All Sky Survey, we have chosen the brightest candidate, G308.3-1.4, as our pilot target for a dedicated investigation with Chandra X-ray Observatory. Our observation has revealed an incomplete shell-like X-ray structure which well-correlated with the radio feature. Together with the spectral properties of a shocked heated plasma, we confirm that G308.3-1.4 is indeed a supernova remnant. A bright X-ray point source which locates close to the remnant center is also uncovered in this observation. Its spectral behavior conform with those observed in a rare class of neutron stars. The properties of its optical/infrared counterpart suggests the evidence for a late-type companion star. Interestingly, possible excesses in B-band and H-alpha have been found which indicate this can be an accretion-powered system. With the further support from the putative periodicity of ~1.4 hrs, this source can possibly provide the direct evidence of a binary system survived in a supernova explosion for the first time.

  • PDF

Type-Ia Supernova in M101: Latest Results

  • Im, Myungshin;Choi, Changsu;Jeon, Yiseul;Jun, Hyunsung;Park, Won-Kee;Kim, Ji Hoon;Lee, Jisoo;Pak, Soojong;Baek, Giseon;Kim, Sang-Hyuk;Oh, Youngseok;Jeon, Yeong-Beom;Sung, Hyun-Il;Yoon, Tae Seog;Hong, Jueun;Kim, Dohyeong;Kim, Duho;Jang, Minsung;Hyun, Minhee;Park, Geun-Hong;Yang, Heesu;Jeong, Il-Gyo;Lee, Bang-Won
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.79.2-79.2
    • /
    • 2012
  • SN 2011fe (also known as PTF 11kly) is a Type-1a supernova that appeared in M101, 2011 August. Being only 6.4 Mpc away, this supernova has been intensively observed by various facilities in the world. We monitored this supernova in UBVRI, grizY, and ZYJHK-bands using SNUO, LOAO, SOAO, CQUEAN/McDonald, UKIRT telescopes, and small telescopes in Korea and Mongolia. The monitoring observation is still ongoing, and the light curve has been accumulated over a year. We present the results of the long-term monitoring observation, together with a light-curve fitting result. We will also discuss our findings in terms of the usefulness of Type-Ia supernovae as a distance indicator.

  • PDF