• 제목/요약/키워드: supernova

검색결과 256건 처리시간 0.036초

DYNAMICAL EVOLUTION OF SUPERNOVA REMNANTS BREAKING THROUGH MOLECULAR CLOUDS

  • Cho, Wankee;Kim, Jongsoo;Koo, Bon-Chul
    • 천문학회지
    • /
    • 제48권2호
    • /
    • pp.139-154
    • /
    • 2015
  • We carry out three-dimensional hydrodynamic simulations of the supernova remnants (SNRs) produced inside molecular clouds (MCs) near their surface using the HLL code (Harten et al. 1983). We explore the dynamical evolution and the X-ray morphology of SNRs after breaking through the MC surface for ranges of the explosion depths below the surface and the density ratios of the clouds to the intercloud media (ICM). We find that if an SNR breaks out through an MC surface in its Sedov stage, the outermost dense shell of the remnant is divided into several layers. The divided layers are subject to the Rayleigh-Taylor instability and fragmented. On the other hand, if an SNR breaks through an MC after the remnant enters the snowplow phase, the radiative shell is not divided to layers. We also compare the predictions of previous analytic solutions for the expansion of SNRs in stratified media with our onedimensional simulations. Moreover, we produce synthetic X-ray surface brightness in order to research the center-bright X-ray morphology shown in thermal composite SNRs. In the late stages, a breakout SNR shows the center-bright X-ray morphology inside an MC in our results. We apply our model to the observational results of the X-ray morphology of the thermal composite SNR 3C 391.

Far-infrared Study of Supernova Remnants in the Large Megellanic Cloud

  • 김예솔;구본철;석지연
    • 천문학회보
    • /
    • 제38권1호
    • /
    • pp.53-53
    • /
    • 2013
  • We present preliminary results of far-infrared(FIR) study of the supernova remnant(SNR)s in the Large Magellanic Cloud using the Herschel HERITAGE (HERschel Inventory of The Agents of Galaxy Evolution) data set. HERITAGE provides FIR data covering the entire LMC at 100,160, 250, 350, and 500 um. In order to confirm FIR emission associated with SNRs, we refer to Magellanic Cloud Emission-Line Survey (MCELS) H-alpha & SII data, Spitzer surveying the Agents of a Galaxy's Evolution (SAGE) Multiband Imaging Photometer (MIPS) 24um & 70um data, Chandra Supernova Remnants Catalog, and ATCA 4.8GHz continuum images of Dickel et al. (2005). Among 47 SNRs in the LMC, 7 SNRs show associated FIR emission. We present multi-wavelength view of 5 SNRs; DEM L249, N49, N63A, N132D, and the SNR in N4. N49 and N132D show morphological correlation in FIR and X-ray, suggesting that the FIR emission is from dust grains collisionally heated by X-ray emitting plasma. The FIR emission of N63A resembles H-alpha emission, which implies that the FIR line radiation could be dominant. The FIR images of the rest two objects, DEM L249 and SNR in N4, show no correlation to the other-waveband images.

  • PDF

Near-infrared studies of iron knots in Cassiopeia A supernova remnant: I. Spectral classification using principal component analysis

  • 이용현;구본철;문대식
    • 천문학회보
    • /
    • 제38권1호
    • /
    • pp.49.1-49.1
    • /
    • 2013
  • We have been carrying out near-infrared (NIR) spectroscopy as well as [Fe II] narrow band imaging observations of Cassiopeia A supernova remnant (SNR). In this presentation, we describe the spectral classification of the iron knots around the SNR. From eight long-slit spectroscopic observations for the iron-bright shell, we identified a total of 61 iron knots making use of a clump-finding algorithm, and performed principal component analysis in an attempt to spectrally classify the iron knots. Three major components have emerged from the analysis; (1) Iron-rich, (2) Helium-rich, and (3) Sulfur-rich groups. The Helium-rich knots have low radial velocities (${\mid}v_r{\mid}$ < 100 km/s) and radiate strong He I and [Fe II] lines, that match well with Quasi-Stationary Flocculi (QSFs) of circumstellar medium, while the Sulfur-rich knots show strong lines of oxygen burning materials with large radial velocity up to +2000 km/s, which imply that they are supernova ejecta (i.e. Fast-Moving Knots). The Iron-rich knots have intermediate characteristics; large velocity with QSF-like spectra. We suggest that the Iron-rich knots are missing "pure" iron materials ejected from the inner most region of the progenitor and now encountering the reverse shock.

  • PDF

PARTICLE ACCELERATION IN SUPERNOVA REMNANTS

  • KANG, HYESUNG
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.545-548
    • /
    • 2015
  • Most high energy cosmic rays (CRs) are thought to be produced by diffusive shock acceleration (DSA) in supernova remnants (SNRs) within the Galaxy. Plasma and MHD simulations have shown that the self-excitation of MHD waves and amplification of magnetic fields via plasma instabilities are an integral part of DSA for strong collisionless shocks. In this study we explore how plasma processes such as plasma instabilities and wave-particle interactions can affect the energy spectra of CR protons and electrons, using time-dependent DSA simulations of SNR shocks. We demonstrate that the time-dependent evolution of the shock dynamics, the self-amplified magnetic fields and $Alfv{\acute{e}nic$ drift govern the highest energy end of the CR energy spectra. As a result, the spectral cutoffs in nonthermal X-ray and ${\gamma}$-ray radiation spectra are regulated by the evolution of the highest energy particles, which are injected at the early phase of SNRs. We also find that the maximum energy of CR protons can be boosted significantly only if the scale height of the magnetic field precursor is long enough to contain the diffusion lengths of the particles of interests. Thus, detailed understandings of nonlinear wave-particle interactions and time-dependent DSA simulations are crucial for understanding the nonthermal radiation from CR acceleration sources.

Near-infrared Spectroscopy of Metal-enriched Supernova Ejecta in Cassiopeia A

  • Lee, Yong-Hyun;Koo, Bon-Chul
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.44.4-44.4
    • /
    • 2019
  • The supernova remnant Cassiopeia A (Cas A) provides a unique opportunity to observe the fine details of the explosion of core-collapse supernova (SN). Previous optical and near-infrared (NIR) observations of Cas A have shown that the spatial distribution of the metal-enriched SN ejecta is very complicated, indicating that the SN explosion should have been asymmetric and turbulent, especially near the core. Recently, we obtained a long-exposure (~10 hr) image of Cas A by using the UKIRT 3.6-m telescope with a narrow-band filter centered at [Fe II] 1.644 um emission. This 'deep [Fe II] image' provides an unprecedented panoramic view of Cas A, revealing the distribution of dense SN ejecta over the entire remnant. We have carried out NIR multi-object spectroscopic observations of the dense ejecta knots in the northeastern (NE) and eastern (E) outer regions of the remnant using the MMIRS attached on the MMT 6.5-m telescope. A total of 67 ejecta knots are detected. By analyzing their spectra, we have found that the knots in the NE area show strong [S II]/[S III] and [Fe II] lines but little or no [P II] line, while those in the E outer region show strong [Fe II] lines but weak [S II]/[S III] lines. In this talk, we present the preliminary results of our NIR spectroscopic observations and discuss the implications.

  • PDF

volution of massive stars in Case A binary systems and implications for supernova progenitors

  • Lee, Hunchul;Yoon, Sung-Chul
    • 천문학회보
    • /
    • 제45권1호
    • /
    • pp.70.4-71
    • /
    • 2020
  • One of the distinctive characteristics of the evolution of binary systems would be mass transfer. Close binary systems experience so-called Case A mass transfer during the main-sequence. We have performed calculations of the evolution of massive Case A (with the initial period 1.5 ~ 4.5 days) binary systems with the initial mass of 10 ~ 20 solar masses and mass ratio 0.5 ~ 0.95 using the MESA code. We find that in some systems, after the first mass transfer, the secondary stars evolve faster than the primary stars and undergo so-called 'reverse' mass transfer. Such phenomena tend to occur in relatively low-mass (initial mass < 16 solar masses) and close (initial period < 3 day) systems. Unless a system enters the common-envelope phase, the primary star would become a single helium star after the secondary star ends its life if the system were unbound by the neutron star kick. We find the various evolutionary implications of the remaining primary stars. In addition to the evolution into the compact single helium star progenitor, there is a possibility that the remaining primary star could evolve into a helium giant star, which could be a promising candidate for Type Ibn supernova progenitor, depending on the core mass. Further, we find that some primary stars satisfy the conditions for the formation of electron-capture supernova progenitor.

  • PDF