• Title/Summary/Keyword: supernatants of bacterial cultures

Search Result 7, Processing Time 0.02 seconds

Inhibitory Effects of Pepper Mild Mottle Virus Infection by Supernatants of Five Bacterial Cultures in Capsicum annuum L.

  • Venkata Subba Reddy, Gangireddygari;In-Sook, Cho;Sena, Choi;Ju-Yeon, Yoon
    • The Plant Pathology Journal
    • /
    • v.38 no.6
    • /
    • pp.646-655
    • /
    • 2022
  • Pepper mild mottle virus (PMMoV), one of the most prevalent viruses in chili pepper (Capsicum annuum L.) is a non-enveloped, rod-shaped, single-stranded positive-sense RNA virus classified in the genus Tobamovirus. The supernatants of five bacterial cultures (Pseudomonas putida [PP], Bacillus licheniformis [BLI], P. fluorescens [PF], Serratia marcescens [SER], and B. amyloliquifaciens [BA]) were analyzed to find novel antiviral agents to PMMoV in chili pepper. Foliar spraying with supernatants (1:1, v/v) obtained from Luria-Bertani broth cultures of PP, BLI, PF, SER, and BA inhibited PMMoV infection of chili pepper if applied before the PMMoV inoculation. Double-antibody sandwich enzyme-linked immunosorbent assay showed that treatments of five supernatants resulted in 51-66% reductions in PMMoV accumulation in the treated chili pepper. To identify key compounds in supernatants of PP, BLI, PF, SER, and BA, the supernatants were subjected to gas chromatography-mass spectrometry. The 24 different types of compounds were identified from the supernatants of PP, BLI, PF, SER, and BA. The compounds vary from supernatants of one bacterial culture to another which includes simple compounds-alkanes, ketones, alcohols, and an aromatic ring containing compounds. The compounds triggered the inhibitory effect on PMMoV propagation in chili pepper plants. In conclusion, the cultures could be used to further conduct tissue culture and field trial experiments as potential bio-control agents.

The Antibacterial Properties of Filtrates from Chinese Cabbage Kimchi

  • Seong-Soo CHA;JeungSun LEE;Min-Kyu KWAK
    • The Korean Journal of Food & Health Convergence
    • /
    • v.9 no.6
    • /
    • pp.9-19
    • /
    • 2023
  • Lactobacillus plantarum and Leuconostoc mesenteroides are crucial functional starters and predominant isolates in a wide range of fermented foods, particularly kimchi, whose constituents exhibit bioactive properties. We previously developed a methodology using anion exchange resins to purify peptidyl compounds from Lb. plantarum LBP-K10. Antibacterial cultures of Lb. plantarum LBP-K10 were obtained from the respective cultures' supernatants and filtrates. However, conclusive evidence of the efficacy of kimchi filtrates in eradicating pathogenic bacteria is lacking. We aimed to simulate the potential effects of antibacterial filtrates that contained antibacterial compounds which were derived from cultures of Lb. plantarum LBP-K10. We acquired the kimchi filtrates using a combination of centrifugation and filtration methodologies, without the requirement for inoculation. The filtered liquid from Chinese cabbage kimchi, inoculated with Lb. plantarum LBP-K10 as a starter culture, and the non-inoculated liquid from Chinese cabbage kimchi (referred to as CCK and CCKRef, respectively) were were examined. CCK demonstrated greater inhibitory activity and a more significant bactericidal effect against the bacterial indicator strains. The minimum inhibitory concentration demonstrated comparable outcomes in tests against both Gram-positive and Gram-negative bacteria. This research offers a groundbreaking examination that displays the effectiveness of profiling peptidyl compounds within kimchi filtrates for curing bacterial infections.

Relative Level of Sucrose Metabilizing Enzymes in Oral Streptococci (구강 Streptococci가 가진 Sucrose 대사 효소의 활성도의 비교)

  • 최선진
    • Korean Journal of Microbiology
    • /
    • v.19 no.3
    • /
    • pp.137-141
    • /
    • 1981
  • Occurrence and distribution of sucrose metabolizing enzymes in oral streptococci had been studied. In these studies, the carbohydrate component of the culture medium had been glucose. I have extended these studies by analyzing bacterial culture supernatants for the relative content of hexosyltransferases, namely glucosyl and fructosyltransferase. As a carbohydrate, fructose was used. The growth measured for nine oral streptococci (Strptococcus mutans strains BHT, ING, AHT, 6715, LM-7, and SL-1 ; Streptococcus sanguis 903, 9811, and M-5) varied. The level of glucosyltansferase activity also varied among S. mutans strains, and its level in S. sanguis was relatively low. Fructosyltansferase activity of the various strains fluctuated more than of glucosyltransferase. S.mutans strain LM-7 had significantly higher level of both enzymes. As a whole, fructose-grown cultures had generally an agreeable trend of enzyme activity to those from glucose-grown cultures.

  • PDF

Effects of bacterial LPS and DNA on the induction of IL-1β, IL-10 and IL-12 by mouse peritoneal macrophages in vitro

  • Samad, D. Abdel;Abdelnoor, AM
    • Advances in Traditional Medicine
    • /
    • v.6 no.2
    • /
    • pp.134-143
    • /
    • 2006
  • The capacities of bacterial DNA, extracted from Salmonella typhimurium, and lipopolysaccharide (LPS), extracted from Salmonella minnesota, to activate mouse peritoneal macrophages in vitro were compared. Activation was assessed by estimating e levels of 3 cytokines, IL-10, IL-12, and $IL-1{\beta}$, at time intervals of 3, 6, 9, and 24 h after addition of LPS and/or DNA to macrophage cultures. Cytokine levels in culture supernatants were determined by enzyme-linked immunosorbent assay (ELISA) and cytokine mRNA levels were estimated based on band intensity in cultured cells by reverse transcriptase-polymerase chain reaction (RT-PCR). Results obtained demonstrated the ability of DNA and LPS to elicit increased production of all 3 cytokines as compared to controls. In the amount tested, LPS appeared to be a more potent inducer of IL-12, and $IL-1{\beta}$, whereas DNA induced higher levels of IL-10. DNA and LPS, used in combination, exhibited neither an additive nor a synergistic effect. Rather, an antagonist effect appeared to occur. RT-PCR results correlated well with ELISA.

Isolation and Characterization of Mucous Exopolysaccharide (EPS) Produced by Vibrio furnissii Strain VB0S3

  • Bramhachari P.V.;Kishor P.B. Kavi;Ramadevi R.;Kumar Ranadheer;Rao, B. Rama;Dubey Santosh Kumar
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.44-51
    • /
    • 2007
  • Marine bacterial strains were isolated trom coastal regions of Goa and screened for the strains that produce the highest amount of mucous expolysaccharide (EPS). Our screening resulted in the identification of the strain Vibrio furnissii VB0S3 (hereafter called VB0S3), as it produced the highest EPS in batch cultures during the late logarithmic growth phase. The isolate was identified as VB0S3 based on morphological and biochemical properties. Growth and EPS production were studied in mineral salts medium supplemented with NaCl (1.5%) and glucose (0.2%). The exopolymer was recovered from the culture supernatant by using three volumes of cold ethanol precipitation and dialysis procedure. Chemical analyses of EPS revealed that it is primarily composed of neutral sugars, uronic acids, and proteins. Fourier-transform infrared (FT-IR) spectroscopy revealed the presence of carboxyl, hydroxyl, and amide groups, which correspond to a typical heteropolymeric polysaccharide, and the EPS also possessed good emulsification activity. The gas chromatographic analysis of an alditol-acetate derivatized sample of EPS revealed that it was mainly composed of galactose and glucose. Minor components found were mannose, rhamnose, fucose, ribose, arabinose, and xylose. EPS was readily isolated from culture supernatants, which suggests that the EPS was a slime-like exopolysaccharide. This is the first report of exopolysaccharide characterization that describes the isolation and characterization of an EPS expressed by Vibrio surnissii strain VB0S3. The results of the study contribute significantly and go a long way towards an understanding of the correlation between growth and EPS production, chemical composition, and industrial applications of the exopolysaccharide in environmental biotechnology and bioremediation.

Antibacterial Activity against Food-poisoning Causing Bacteria and Characterization of Lactobacillus plantarum YK-9 Isolated from Kimchi (김치에서 분리한 세균인 Lactobacillus plantarum YK-9의 식중독 원인세균에 대한 항균활성 및 특성)

  • Song, You-Jin;Park, Su-Ho;You, Ji-Young;Cho, Yun-Seok;Oh, Kye-Heon
    • KSBB Journal
    • /
    • v.24 no.3
    • /
    • pp.273-278
    • /
    • 2009
  • The purpose of this work was to investigate the antibacterial activity of Lactobacillus plantarum YK-9 isolated from fermented Kimchi. Morphological and biochemical characteristics of L. plantarum YK-9 were examined. Phylogenetic analysis using 16S rRNA sequencing was performed to identify the strain, and the strain could be assigned to Lactobacillus plantarum, designated as L. plantarum YK-9. The strain was registered in GenBank as [FJ669130]. During the incubation period of L. plantarum YK-9, the changes of bacterial growth and residual organic acids were monitored. HPLC was used to confirm the organic acids produced in the cultures as metabolites. L. plantarum YK-9 produced both lactic acid and acetic acid, which were responsible for the pH decrease during growth. Initial pH 7.0 of the cultures decreased to 3.6 at the incubation after 72 hours, and concentrations of lactic acid and acetic acid increased to approximately 588.7 mM and 255.5 mM, respectively. The antibacterial activities against food-poisoning causing bacteria were examined with 20-fold concentrated culture supernatants from L. plantarum YK-9, and the antibacterial effects were clearly observed against all the bacteria tested in this work.

Isolation and characterization of marine bacteria with alginate degrading activity (알긴산 분해능을 갖는 Pseudoalteromonas 및 Vibrio 속 해양세균들의 분리 및 특성분석)

  • Yoon, Young-Jun;Kim, Jung-Wan
    • Korean Journal of Microbiology
    • /
    • v.51 no.4
    • /
    • pp.364-373
    • /
    • 2015
  • As an effort to utilize alginate, 103 bacterial isolates that were positive for the alginate lyase activity were isolated from various clams and seawater samples collected in Incheon coastal area. Among them, 3 strains (M1-2-1, M6-1, and C8-15) were finally selected for further analysis based on their activities at higher levels than others. These isolates were all Gram-negative and rod shaped halophilic bacteria with motility. According to their physiological and biochemical properties as well as DNA sequence of their 16S rRNA genes, M1-2-1 and M6-1 were identified as a member of genus Pseudoalteromonas and C8-15 belonged to genus Vibrio. They exhibited the alginate degrading activity at the maximal level when they were cultured in APY broth for 6-8 h at $25^{\circ}C$. Both their growth and the enzyme activity were greatly enhanced when NaCl was added to the growth medium. The crude alginate lyases from the supernatants of the bacterial cultures showed the highest activity at $45^{\circ}C$ and pH 7.0-8.0. M1-2-1 and M6-1 produced 2.723 and 1.976 g/L of reducing sugar from alginate, respectively, suggesting that they have potential for commercial application.