• Title/Summary/Keyword: superhydrophobic surface

Search Result 113, Processing Time 0.025 seconds

Jumping of a Droplet on a Superhydrophobic Surface in AC Electrowetting (AC 전기습윤을 이용한 초발수 표면에서의 액적의 점프)

  • Lee, Seung-Jun;Oh, Jung-Min;Kang, Kwan-Hyoung
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2501-2504
    • /
    • 2008
  • We found that a droplet placed on a superhydrophobic surface jumps upward when we controlled the electrical wetting tension appropriately by applying AC voltage. We investigated how the surface deformation and jumping phenomenon of a droplet are affected by applied frequency under constant voltage. We found that a droplet jumps up continuously at a resonance frequency.

  • PDF

Experimental Study on Slip Flows in Superhydrophobic Microchannel (초소수성 마이크로 채널 내 슬립 유동의 실험적 측정)

  • Kim, Ji-Hoon;Byun, Do-Young;Ko, Han-Seo
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.84-87
    • /
    • 2007
  • Recently, many studies concern on the slip flow and slip length, which allow liquid flow to reduce drag force in microchannel. However, until now not enough investigation is performed experimentally to understand the slip flow in the superhydrophobic microchannel exhibiting riblet structures on vertical wall. Here we investigated and compared the slip flows according to the surface characteristics; hydrophilic, hydrophobic, and superhydrophobic wettabilities. Using the micro-PIV, velocity profiles can be obtained in the glass (hydrophilic), PDMS (hydrophobic), and micro-structured PDMS (superhydrophobic) microchannels. For both PDMS and superhydrophobic PDMS microchannels, we observed the slip effects showing the microscale slip lengths. Due to the micro-riblet, there are two distinctive flow characteristics on the riblet surface and the liquid meniscus in the valleys.

  • PDF

Wettability of Lubricant-Impregnated Electroplated Zinc Surface with Nanostructure (윤활유가 침지된 나노구조 전기아연도금층의 젖음성)

  • Jung, Haechang;Kim, Wang Ryeol;Jeong, Chanyoung;Lee, Junghoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.1
    • /
    • pp.37-42
    • /
    • 2019
  • Electrodeposited zinc layer is widely used as a sacrificial anode for a corrosion protection of steel. In this study, we modified the surface of electrodeposited zinc to have a hydrophobicity, which shows various advanced functionalities, such as anti-corrosion, anti-biofouling, anti-icing and self-cleaning, due to its repellency to liquids. Superhydrophobicity was realized on electrodeposited zinc layer with a hydrothermal treatment, creating nanostructures on the surface, and following Teflon coating. The superhydrophobic surface shows a great repellency to water with high surface tension, while liquid droplets with low surface tension easily adhered on the superhydrophobic surface. However, immiscible lubricant-impregnated superhydrophobic surface shows a great repellency to various liquids, regardless of their surface tension. Therefore, it is expected that the lubricant-impregnated surface can be an alternative of superhydrophobic surface, which have a drawback for some liquids with a low surface tension.

Development of Laser Processing Technology and Life Evaluation Method for Lifespan Improvement of Titanium Superhydrophobic Surface (티타늄 초소수성 표면의 수명 향상을 위한 레이저 처리 기법 개발 및 내수명성 평가법 개발)

  • Kyungeun Jeong;Kyeongryeol Park;Yong Seok Choi;Seongmin Kang;Unseong Kim;Song Yi Jung;Kyungjun Lee
    • Tribology and Lubricants
    • /
    • v.40 no.3
    • /
    • pp.91-96
    • /
    • 2024
  • Recently, extensive studies have been carried out to enhance various performance aspects such as the durability, lifespan, and hardness by combining diverse materials or developing novel materials. The utilization of superhydrophobic surfaces, particularly in the automotive, textile, and medical device industries, has gained momentum to achieve improved performance and efficiency. Superhydrophobicity refers to a surface state where the contact angle when water droplets fall is above 150°, while the contact angle during sliding motion is smaller than 10°. Superhydrophobic surfaces offer the advantage of water droplets not easily sliding off, maintaining a cleaner state as the droplets leave the surface. Surface modification involves two fundamental steps to achieve superhydrophobicity: surface roughness increase and surface energy reduction. However, existing methods, such as time-consuming processes and toxic organic precursors, still face challenges. In this study, we propose a method for superhydrophobic surface modification using lasers, aiming to create roughness in micro/nanostructures, ensuring durability while improving the production time and ease of fabrication. The mechanical durability of superhydrophobic samples treated with lasers is comparatively evaluated against chemical etching samples. The experimental results demonstrate superior mechanical durability through the laser treatment. Therefore, this research provides an effective and practical approach to superhydrophobic surface modification, highlighting the utility of laser treatment.

Chemically Modified Superhydrophobic Zinc Oxide nanoparticle surface

  • Lee, Mi-Gyeong;Gwak, Geun-Jae;Yong, Gi-Jung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.448-448
    • /
    • 2011
  • We investigated the fabrication method of superhydrophobic nanocoating prepared by a simple spin-coating and the chemisorption of fatty acid. The resulting coating showed a tremendous water repellency (static water contact angle = $154^{\circ}$) and the water contact angle can be modulated by changing the number of deposition cycles of ZnO and the carbon length of Self-Assembled Monolayers (SAM). Varying the number of deposition cycles of ZnO controlled the surface roughness, and affected to the superhydrophobicity. This simple coating method can be universally applicable to any substrates including flexible surfaces, papers and cotton fabrics, which can effectively be used in various potential applications. We also observed the thermal and dynamic stabilities of SAM on ZnO nanoparticles. The superhydrophobicic surface maintained its superhydrophobic properties below $250^{\circ}C$ and under dynamic conditions.

  • PDF

Facile preparation of superhydrophobic thin films using non-aligned carbon nanotubes

  • Goh, Yee-Miin;Han, Kok Deng;Tan, Lling-Lling;Chai, Siang-Piao
    • Advances in nano research
    • /
    • v.2 no.4
    • /
    • pp.219-225
    • /
    • 2014
  • A simple preparation method on creating superhydrophobic surface using non-aligned carbon nanotubes (CNTs) was demonstrated. Superhydrophobic CNT thin films were prepared by doping a sonicated mixture of CNTs and chloroform onto a glass slide. Water contact angles of the CNT thin films were measured using a contact angle goniometer. The thin films were characterized using laser microscope and scanning electron microscope. Experimental results revealed that the highest average contact angle of $162{\pm}2^{\circ}$ was achieved when the films' thickness was $1.628{\mu}m$. The superhydrophobic surface was stable as the contact angle only receded from $162{\pm}2$ to $157{\pm}2^{\circ}$ after 10 min under normal atmospheric condition.

Transparent and Superhydrophobic Films Prepared by Polydimethylsiloxane-Coated Silica nanoparticles

  • Park, Eun Ji;Sim, Jong Ki;Jeong, Myung-Geun;Kim, Young Dok;Lim, Dong Chan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.218-218
    • /
    • 2013
  • We report a simple and cost-effective method to fabricate transparent superhydrophobic surface on various substrates. The surface was fabricated by coating hydrophobic PDMS (polydimethylsiloxane) film on the silica nanoparticle and subsequent fixing of the hydrophobic silica nanoparticles onto substrates. The water contact angle for the prepared surface was determined to be over $150^{\circ}$, whichindicates that the surface is highly repellent to water. The hierarchical structure and roughness of the surface were examined by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Additionally, transparency of the prepared surface was measured with UV-VIS spectrometer. The transmittance of the superhydrophobic surface was ~80%, which is lower than that without PDMS-coated silica by only 5 to 10%. It is also notable that the superhydrophobic surface fully recovers its original transmittance after self-cleaning process. Also the PDMS coating is stable under a wide range of pH conditions, UV radiation and salinity conditions, which is essential for the practical use. Moreover, our fabrication method is applicable in large scale production.

  • PDF

Bioinspired Nanoengineering of Multifunctional Superhydrophobic Surfaces

  • Choi, Chang-Hwan
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.11a
    • /
    • pp.102-133
    • /
    • 2015
  • Nature, such as plants, insects, and marine animals, uses micro/nano-textured surfaces in their components (e.g., leaves, wings, eyes, legs, and skins) for multiple purposes, such as water-repellency, anti-adhesiveness, and self-cleanness. Such multifunctional surface properties are attributed to three-dimensional surface structures with modulated surface wettability. Especially, hydrophobic surface structures create a composite interface with liquid by retaining air between the structures, minimizing the contact area with liquid. Such non-wetting surface property, so-called superhydrophobicity, can offer numerous application potentials, such as hydrodynamic drag reduction, anti-biofouling, anti-corrosion, anti-fogging, anti-frosting, and anti-icing. Over the last couple of decades, we have witnessed a significant advancement in the understanding of surface superhydrophobicity as well as the design, fabrication, and applications of superhydrophobic coatings/surfaces/materials. In this talk, the designs, fabrications, and applications of superhydrophobic surfaces for multifunctionalities will be presented, including hydrodynamic friction reduction, anti-biofouling, anti-corrosion, and anti-icing.

  • PDF