• Title/Summary/Keyword: superheat

검색결과 198건 처리시간 0.021초

비선형회귀모델을 이용한 히트펌프시스템의 열교환기 고장에 대한 고장감지 및 진단에 대한 연구 (Fault Detection and Diagnosis (FDD) Using Nonlinear Regression Models for Heat Exchanger Faults in Heat Pump System)

  • 김학수;김민수
    • 대한기계학회논문집B
    • /
    • 제35권11호
    • /
    • pp.1111-1117
    • /
    • 2011
  • 본 연구에서는 비선형회귀모델을 이용한 히트펌프시스템에서의 고장감지 및 진단 알고리즘을 개발하였다. 히트펌프시스템에 발생할 수 있는 다양한 고장요소 중, 열교환기 고장에 대한 연구를 수행하였다. 해석 식을 바탕으로 제작한 모델을 이용하여 총 4가지 작동 모드(무고장, 증발기 고장, 응축기 고장, 응축기와 증발기 고장)에 대한 시뮬레이션을 수행하였다. 고장감지 및 진단 알고리즘을 개발하기 위해 무고장모드에서의 데이터를 바탕으로 각 열교환기의 과열도 또는 과냉도를 예측할 수 있는 비선형회귀모델을 제시하였다. 고장감지 및 진단 알고리즘은 이 비선형회귀모델을 바탕으로 예측한 열교환기에서의 과열도 또는 과냉도 값과 시뮬레이션 값을 비교하여 그 차이의 정도에 따라 각 열교환기의 고장을 감지 및 진단하도록 하였다.

마이크로채널에서 과냉 핵비등 시발점의 비정상 수치해석 (TRANSIENT SIMULATION OF SUBCOOLED ONSET OF NUCLEATE BOILING IN A MICRO-CHANNEL)

  • 이희준
    • 한국전산유체공학회지
    • /
    • 제16권2호
    • /
    • pp.88-93
    • /
    • 2011
  • A numerical study of subcooled onset of nucleate boiling (ONB) in a micro-channel under pulsed heating using volume of fluids (VOF) model was conducted. The VOF simulation adopting the existing experimental condition is compared to the experimental data. The time to ONB was determined when the void fraction at the microheater surface first appeared. The theoretical superheat for homogeneous nucleation relatively predicts the transient ONB results of convective flow of water well based on local temperature distribution. It was found that once heat load increases at the heater, transient flow boiling starts to occur faster.

평판핀이 부착된 증발기의 시뮬레이션 (Numerical Simulation of Plate Finned-Tubes Evaporator)

  • 손병진;민묘식;최상경
    • 설비공학논문집
    • /
    • 제1권4호
    • /
    • pp.297-304
    • /
    • 1989
  • Development of a more satisfactory program of computing the performance on a multi-tube evaporator with continuous plate fins is attempted in this study. The fluid flow involving a change of phase make the flow properties and fluid friction factor of refrigerants, the heat transfer coefficients of refrigerant and air sides vary significantly. Taking such variations into account, a useful program is developed to predict the steady state performance of a multi-tube evaporator. The program was applied to an evaporator which has outside diameter of 10.05mm, inside diameter of 9.35mm, length of 5.4m and two rows arraied staggered. Then the variations of refrigerant quality, temperature, pressure, velocity, enthalpy, specific volume and air temperature, tube temperature were discussed. Satisfactory results were presented that the degree of superheat at the outlet side was $4.4^{\circ}C$ and the air temperature drop between the inlet and outlet of the air conditioner was $10^{\circ}C$.

  • PDF

유한요소법을 이용한 연속주조공정의 연계해석 (Coupled Analysis of Continuous Casting by FEM)

  • 문창호;황상무
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 추계학술대회 논문집
    • /
    • pp.181-185
    • /
    • 2001
  • Three-dimensional finite-element-based numerical model of turbulent flow, heat transfer, macroscopic solidification and inclusion trajectory in a continuos steel slab caster was developed Turbulence was incorporated using the Improved Low-Re turbulence model with positive preserving approach. The mushy region was modeled as the porous media with average effective viscosity. A series of simulations was carried out to investigate the effects of the casting speed, the slab size, the delivered superheat the immersion depth of the SEN on the transport phenomena. In the absence of any known experimental data related to velocity profiles, the numerical predictions of the solidified profile on a caster was compared with breakouts data and a good agreement was found.

  • PDF

열농도대류를 고려한 연속주조공정의 수치해석 (Numerical analysis of the continuous casting process in the presence of thermo-solutal convection)

  • 정재동;유호선;이준식
    • 대한기계학회논문집B
    • /
    • 제21권3호
    • /
    • pp.445-456
    • /
    • 1997
  • Continuous casting process is numerically analyzed using the continuum model in a non-orthogonal coordinate system. Flow damping in the mush is modeled by combining the viscosity dependence on liquid fraction in dilute mush and the permeability dependence on liquid fraction in concentrated mush. The effect of turbulence is indirectly considered by effective diffusivity determined elsewhere by experiment. The main objective is to investigate the effects of casting parameters such as casting speed and tundish superheat on the distribution of surface temperature, shell thickness, metallurgical length and centerline segregation. Some of the computed results are compared with available experiments, and reasonable agreements are obtained.

병렬 미세관에서의 기포성장 및 역류현상에 관한 수치적 연구 (Numerical Study of Bubble Growth and Reversible Flow in Parallel Microchannels)

  • 이우림;손기헌
    • 대한기계학회논문집B
    • /
    • 제32권2호
    • /
    • pp.125-132
    • /
    • 2008
  • The bubble dynamics and heat transfer associated with nucleate boiling in parallel microchannels is studied numerically by solving the equations governing conservation of mass, momentum and energy in the liquid and vapor phases. The liquid-vapor interface is tracked by a level set method which is modified to include the effects of phase change at the interface and contact angle at the wall. Also, the reversible flow observed during flow boiling in parallel microchannels has been investigated. Based on the numerical results, the effects of contact angle, wall superheat and the number of channels on the bubble growth and reversible flow are quantified.

미세관에서의 기포성장에 관한 수치적 연구 (Numerical Study of Bubble Growth in a Microchannel)

  • 서기철;손기헌
    • 대한기계학회논문집B
    • /
    • 제28권8호
    • /
    • pp.996-1003
    • /
    • 2004
  • The bubble motion during nucleate boiling in a microchannel is investigated by numerically solving the equations governing conservation of mass, momentum and energy in the liquid and vapor phases. The liquid-vapor interface is tracked by a level set method which is modified to include the effects of phase change at the interface and contact angle at the wall. Also, the evaporative heat flux from the thin liquid film that forms underneath a growing bubble attached to the wall is incorporated in the analysis. Based on the numerical results, the effects of channel size, contact angle, wall superheat and waiting period on the bubble growth and heat transfer in a microchannel are quantified.

마이크로다공성 코팅된 발열체에서의 풀비등 직접냉각 성능에 관한 실험적 연구 (An Experimental Study on Direct Cooling Performance using Pool Boiling from Micro-Porous Coated Surface)

  • 김태균;이규정;김용찬;박찬성
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1353-1358
    • /
    • 2004
  • An experimental study of pool boiling behavior on micro-porous enhanced square heater surfaces immersed in PF5060 is performed. The effects of heater orientation, Subcooling and substrate distance on the pool boiling heat transfer performance for the double heaters were investigated under increasing heat-flux conditions. The boiling performance of micro-porous coated surface was better than that of plain surface. The double heaters with upper substrate of 0.2cm substrate interval have lower boiling performances compared with the results for the double heaters with that of 0.5cm and 1.0cm substrate interval and without the substrate. In comparison to upper heater and below heater with orientation, the upper heater has lower superheat temperature than the below heater due to the bubble sweeping.

  • PDF

수동식 팽창밸브 조정에 의한 냉동시스템의 성능 분석 (Performance Analysis of Refrigeration System by Adjusting Manual Expansion Valve)

  • 양형석
    • 한국산업융합학회 논문집
    • /
    • 제14권3호
    • /
    • pp.113-119
    • /
    • 2011
  • This study analyzed facts affecting the performance of refrigeration systems after throttling actions, by changing the amount of refrigerant according to adjusting the opening of manual expansion valve to 80%, or 20% with vapor compressional refrigeration training equipment. At opening of 20%, the inlet and outlet temperature of compressor, subcooling and superheat, condenser heat, refrigeration effect, flash gas heat, coefficient of performance were higher, while at 80%, condensing pressure, evaporating pressure, compression work were higher, Thus, we could see changes in the amount of refrigerant affect the performance of the refrigeration system.

열펌프의 성능 최적화에 관한 연구 (Optimization of Heat Pump Systems)

  • 최종민;윤린;김용찬
    • 신재생에너지
    • /
    • 제3권4호
    • /
    • pp.22-30
    • /
    • 2007
  • An expansion device plays an important role in optimizing the heat pumps by controlling refrigerant flow and balancing the system pressures. Conventional expansion devices are being gradually replaced with electronic expansion valves due to increasing focus on comfort, energy conservation, and application of a variable speed compressor. In addition, the amount of refrigerant charge in a heat pump is another primary parameter influencing system performance. In this study, the flow characteristics of the expansion devices are analyzed, and the effects of refrigerant charge amount on the performance of the heat pump and the variation of compressor speed are investigated at various operating conditions. Mass flow rate through capillary tube, short tube orifice, and EEV was strongly dependent on the upstream pressure and subcooling. The heat pump system is very sensitive with a variation of refrigerant charge amount. The performance of it can be optimized by adjusting the flow rate through expansion device to maintain a constant superheat at all test conditions.

  • PDF