• Title/Summary/Keyword: superficial velocity

Search Result 129, Processing Time 0.026 seconds

Prediction of Oxygen Transfer Rate During Sisomicin Fermentation Employing Air Lift Fermentor (Air Lift Fermentor에서 Sisomicin 발효시에 발효유사액을 이용한 산소전달속도 예측)

  • 김성룡;신철수
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.6
    • /
    • pp.659-664
    • /
    • 1994
  • In order to predict gas hold-up and oxygen transfer rate during sisomicin fermentation employing air lift fermentor, simulated media similar to fermentation broths in rheological proper- ties were prepared and used. Rheological properties of fermentation broths from 40 hours and 60 hours of cultivation were analyzed by applying to Power's Law equation. Regardless of addition and no addition of MgSO$_{4}$, the tendencies, that n value was decreased and K value was increased as aeration rate was increased, were shown. Simulated media of twelve different fermentation broths were formulated in a range of 0.7 to 2.1% CMC, and the values of gas hold-up and k$_{L}$a depending on superficial air velocity were measured using these simulated media. And the relation- ships, $\varepsilon$=$\alpha$U$_{Gr}$$\beta$, K$_{L}$a=$\gamma$U$_{Gr}$$\delta$ were obtained, and these equations are thought to be used to predict the values of gas hold-up and k$_{L}$a during fermentation.

  • PDF

The Effect on HRT and Hydraulic Characteristics of Biological Activated Carbon Fluidized Bed. (생물활성탄 유동상의 수리학적 특성과 체류시간의 영향)

  • 우달식;김선일;남상호
    • Journal of environmental and Sanitary engineering
    • /
    • v.12 no.3
    • /
    • pp.103-109
    • /
    • 1997
  • As the quality of raw water deteriorates, a number of additional treatment techniques have been developed and adapted to water treatment for producing a safe and aesthetically satisfactory drinking water. So, BACFB process as pretreatment in water supply is to be effective to remove dissolved organics. This study performed to find out the effects of HRT and hydraulic characteristics on BACFB reactors in water supply. The flow type in reactor was a high dispersion with complete mixing. As superficial velocity was increased, bed expansion was closed to theoretical values. It was considered that below 30 min HRT could operated to ensure the removal of dissolved organics.

  • PDF

Separation of Magnetic/non-Magnetic Particles by an Electromagnetic Fluidized Bed (전자석 유동층에 의한 자성/비자성 입자의 분리)

  • 김용하;서인국
    • Resources Recycling
    • /
    • v.6 no.1
    • /
    • pp.17-22
    • /
    • 1997
  • An electromagnetic fluidized bed was proposed for the continuous separation of magnetic particles from the fine a admixtures with nonHmagnetic particles. The effects of operating variables on the magnetic fraction in the separated p particles were examined, including superficial gas velocity, mixing fraction of magnetic particles (= 100-mixing fraction of n non-magnetic particles) in the admixture, and electric current supplied to the electwmagnet. It was found that the s separation was possible when a magnetic force formed by the electromagnets works on the magnetic particles over the hydrodynamic force caused by a gas stream for fluidizing the fine admixture.

  • PDF

Continuous Production of Fructo-oligosaccharides by Immobilized Cells of Aureobasidium pullulans

  • Yun, Jong-Won;Jung, Kyung-Hoon;Jeon, Yeong-Joong;Lee, Jae-Heung
    • Journal of Microbiology and Biotechnology
    • /
    • v.2 no.2
    • /
    • pp.98-101
    • /
    • 1992
  • Continuous production of fructo-oligosaccharides employing a packed bed reactor charged with immobilized cells of Aureobasidium pullulans was investigated. The optimum conditions for reactor operation were a feed concentration of 860 g/l; a feed rate, expressed as superficial space velocity of $0.2\;h^{-1}$, and a temperature of $50^\circ{C}$. Under these optimum conditions, the productivity of the reactor was $180\;g/l\cdot{h}$. Initial activity was maintained for more than 100 days. The reactor was successfully scaled up to a production scale of 1000l.

  • PDF

Investigation of Bubble Behavior in Rectangular Microchannels for Different Aspect Ratios (다른 세장비의 사각 마이크로채널 내의 기포 거동에 관한 연구)

  • Choi, Chi-Woong;Yu, Dong-In;Kim, Moo-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.5
    • /
    • pp.471-479
    • /
    • 2010
  • The adiabatic two-phase flow in single rectangular microchannels was studied for different aspect ratios. The working fluids were liquid water and nitrogen gas. The hydraulic diameters of the rectangular microchannels were 490, 322, and $143\;{\mu}m$, and the widths of the microchannels were around $500\;{\mu}m$. The two-phase flow pattern was visualized using a high-speed camera and a long-distance microscope. This study was focused on bubble flow regimes. From the visualized images, the bubble velocity, bubble length, number of bubbles, and void fraction were evaluated. Further, the pressure drop in a single bubble was evaluated by using a unit cell model. The bubble velocity is proportional to the superficial velocity. Further, the relationship between the void fraction and the volumetric quality is linear. The pressure drop in a single elongated bubble is strongly related to the aspect ratio. Finally, the new correlation about the pressure drop of a single elongated bubble in the rectangular microchannel was proposed.

A Study on Combustion Characteristics of Refuse Derived Fuel(RDF) in Various Incinerators (연소방식별 폐기물 고형연료(RDF)의 연소특성 연구)

  • Kim Woo-Hyun
    • Resources Recycling
    • /
    • v.15 no.1 s.69
    • /
    • pp.46-57
    • /
    • 2006
  • For the development of combustion technology of RDF(refuse derived fuel), combustion characteristics are examined in bubbling fluidized bed, circulating fluidized bed, continuos combustor and batch type combustor. The characteristics of combustion and exhaust gas has been compared and analyzed in many type of combustion facilities, which has been utilized as basic data for the advanced research of specified RDF combustion facility. Stable combustion has been observed in bubbling and circulating fluidized bed from controled operating condition like the proper feeding rate and superficial gas velocity. In circulating fluidized bed, concentration of NOx has been increased with the operating condition by the fuel-NO and oxygen reaction and $SO_2$ can be considered not to be produced in RDF fluidized bed from very low concentration in flue gas. HCl concentration is 36.4 ppm as average value and lower than standard emission value, but the counter plan is needed. Shaped RDF and fluff RDF have been compared in continuos combustor and batch type combustor and shaped RDF shows benefit for the stable heat recovery and gas emission shows similar value and characteristics.

A Study on the Perstraction Process Using Microporous Hollow Fiber -The Characteristics of Perstraction Using PP and Hollow Fiber- (다공성 실관막을 이용한 투과추출 공정에 관한 연구 -PP 및 PTFE실관막을 이용한 에탄올의 투과추출 특성에 관한 연구-)

  • Cheong, Won;Hwang, Eui-Yoon;Lee, Ho-Won;Kim, Woo-Sik
    • Membrane Journal
    • /
    • v.1 no.1
    • /
    • pp.65-77
    • /
    • 1991
  • The perstraction of ethanol and acetic acid were performed for three systems of xylene-acetic acid-water, MIBK-ethanol-water, and TBP-ethanol-water, The operating variables were pressure difference between aqueous and organic phase, and superfial velocities of aqueous and organic phases. The tortuosities of PP hollow fiber membrane of Celgard X10-400 and PTFE hollow fober membrane of Tex TA001 were found to be 1.82 and 1.43 respectively, They were obtained from mass tranfer coeffidents in membrane phase for xylene-acetic acid-water systems. The permeation flux and overall mass transfer coefficient for MIBK-ethanol-water system are larger than those for TBP-ethanol-water system. This tendency is magnified with increasing the superficial velocity of organic phase. Overall mass transfer coefficient($K_o$) increases nonlinearly with the increase of superficial velocity of organic phase($V_{or}$), and the relationship between $K_o$ and $V_{or}$ is that $K_o {\propto} V_{or}^{-0.35}$. For ethanol perstraetion using the hollow fiber membrane of Gore Tex TA001, the mass transfer in membrane phase is the rate-limiting step.

  • PDF

Prediction of Two-phase Taylor Flow Characteristics in a Rectangular Micro-channel (사각 마이크로 채널 내 Taylor 유동 특성 예측에 대한 연구)

  • Lee, Jun Kyoung;Lee, Kwan Geun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.7
    • /
    • pp.557-566
    • /
    • 2015
  • The characteristics of a gas-liquid Taylor (slug) flow in a square micro-channel with dimensions of $600{\mu}m{\times}600{\mu}m$ are experimentally investigated in this paper. The test fluids were nitrogen and water. The superficial velocities of the liquid and gas were in the ranges of 0.01 - 3 m/s and 0.1 - 3 m/s, respectively. The bubble and liquid slug lengths, bubble velocities, and bubble frequencies for various inlet conditions were measured by analyzing optical images obtained with a high-speed camera. It was found that the measured values (bubble and liquid slug lengths, bubble velocities) were not in good agreement with the values obtained using empirical models presented in the existing literature. Modified models for the bubble and liquid slug lengths and bubble velocity are suggested and shown to be in good agreement (${\pm}20$) with the measured values. Moreover, the bubble frequency could be predicted well by the relationship between the unit cell length and its velocity.

Blood Flow and Skin Temperature Increases by Monochromatic Infrared Energy Irradiation

  • Lee, Jae-Hyoung;Kim, Gi Won
    • The Journal of Korean Physical Therapy
    • /
    • v.24 no.3
    • /
    • pp.202-207
    • /
    • 2012
  • Purpose: The purpose of this study was to determine the effect of monochromatic infrared energy (MIRE) on the blood flow of the superficial radial artery and local skin temperature in healthy subjects. Methods: Forty healthy volunteers were recruited and randomly assigned to MIRE group (n=20) and placebo group (n=20). The MIRE group received a 890 nm MIRE irradiation on the forearm using two therapy pads for 30 minutes. The therapy pad was composed of an array of 60 diodes. MIRE unit was set at bar 8, that corresponds to a diode power of 10 mW and a power density of $63mW/cm^2$. The placebo group received sham MIRE. Peak blood flow velocity (PBFV), mean blood flow velocity (MBFV), and skin temperature (ST) were measured pre- and post-MIRE irradiation. Results: There was a significant difference in PBFV (p<0.001), MBFV (p<0.001), and ST (p<0.001) between the pre- and post-treated values in the MIRE group. In contrast, no significant difference was found between the pre- and post-treated values in the placebo group. There was significant difference in mean change values from baseline of PBFV (p<0.001), MBFV (p<0.001), and ST (p<0.001) between the MIRE group and the placebo group. There was a significant increase in PBFV (p<0.001), MBFV (p<0.001), and ST (p<0.001) following MIRE irradiation. Conclusion: The arterial blood flow and local skin temperature of the forearm in the healthy subjects were significantly increased following MIRE irradiation.

Combustion Characteristics of Waste Sewage Sludge using Oxy-fuel Circulating Fluidized Bed (슬러지 순산소 유동층 연소특성)

  • Jang, Ha-Na;Sung, Jin-Ho;Choi, Hang Seok;Seo, Yong-Chil
    • Korean Chemical Engineering Research
    • /
    • v.55 no.6
    • /
    • pp.846-853
    • /
    • 2017
  • Cold bed and $30kW_{th}$ pilot bed tests using circulating fluidized bed (CFB) were conducted to apply oxy-fuel technology for waste sludge combustion as a carbon capture and storage technology. In cold bed test, the minimum fluidization velocity ($u_{mf}$) and superficial velocity for fast fluidization was determined as 0.120 m/s and 2.5 m/s, respectively. In the pilot test, air and oxy-fuel combustion experiments for waste sludge were conducted using CFB unit. The flue-gas temperature in 21~25% oxy-fuel combustion was higher than that of air and up to 30% oxy-fuel combustion. In addition, the concentration of carbon dioxide was more than 80% with the oxygen injection range from 21% to 25% in oxy-fuel CFB waste sludge combustion.