• Title/Summary/Keyword: supercritical CO2

Search Result 413, Processing Time 0.027 seconds

Heat Transfer Characteristics for an Upward Flowing Supercritical Pressure $CO_2$ in a Vertical Annulus Passage (수직환형유로에서 상향유동 초임계압 $CO_2$의 열전달 특성)

  • Kang, Deog-Ji;Kim, Sin;Kim, Hwan-Yeol;Bae, Yoon-Yeong
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3395-3400
    • /
    • 2007
  • Heat transfer experiments at a vertical annulus passage were carried out in the SPHINX(Supercritical Pressure Heat Transfer Investigation for NeXt Generation) to investigate the heat transfer behaviors of supercritical $CO_2$. The collected test data are to be used for the reactor core design of the SCWR (SuperCritical Water-cooled Reactor). The mass flux was in the range of 400${\sim}$1200 kg/$m^2$s and the heat flux was chosen up to 150 kW/$m^2$. The selected pressures were 7.75 and 8.12 MPa. The heat transfer data were analyzed and compared with the previous tube test data. The test results showed that the heat transfer characteristics were similar to those of the tube in case of a normal heat transfer mode and degree of heat transfer deterioration became smaller than that in the tube. Comparison of the experimental heat transfer coefficients with the predicted ones by the existing correlations showed that there was not a distinct difference between the correlations.

  • PDF

Removal of toxic compounds from Acer tegmentosum using supercritical fluid extraction (초임계유체 추출을 이용한 산겨릅나무로부터 독성성분들의 제거)

  • Pyo, Dongjin;Jin, Jungeun
    • Analytical Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.392-396
    • /
    • 2008
  • Acer tegmentosum is a tree used to treat various liver diseases in Korea. There have been some concern regarding the safety of Acer tegmentosum due to some toxic chemical compounds in its stems. Supercritical fluid extraction (SFE) was employed to develop a removing method of toxic compounds from Acer tegmentosum. The toxic compounds were effectively extracted with ethanol modified supercritical fluid $CO_2$. The optimum condition of SFE was 100 bar of pressure, $40^{\circ}C$ of extraction temperature, 3 mL/min of $CO_2$ flow rate, 0.2 mL/min of modifier (ethanol) flow rate.

The Removal of Si3N4 Particles from the Wafer Surface Using Supercritical Carbon Dioxide Cleaning (웨이퍼 표면의 Si3N4 파티클 제거를 위한 초임계 이산화탄소 세정)

  • Kim, Yong Hun;Choi, Hae Won;Kang, Ki Moon;Karakin, Anton;Lim, Kwon Teak
    • Clean Technology
    • /
    • v.24 no.3
    • /
    • pp.157-165
    • /
    • 2018
  • In this study, the removal of $Si_3N_4$ particles from the surface of a silicon wafer was investigated by using supercritical carbon dioxide, the IPA co-solvent and cleaning additive chemicals. First, the solubility of several surfactants and binders in supercritical carbon dioxide solubility and particle dispersibility in the binders were evaluated in order to confirm their suitability for the supercritical cleaning process. Particle removal experiments were carried out with adjusting various process parameters and reaction conditions. The surfactants used in the experiment showed little particle removal effect, producing secondary contamination on the surface of wafers. On the other hand, 5 wt% (with respect to $scCO_2$) of the cleaning additive mixture of trimethyl phosphate, IPA, and trace HF resulted in 85% of particle removal efficiency after $scCO_2$ flowing for 4 minutes at $50^{\circ}C$, 2000 psi, and the flow rate of $15mL\;min^{-1}$.

The Influence of the Contact Amount of Supercritical CO2 on Dyeing Uniformity (초임계 CO2 접촉량이 염색 균염성에 미치는 영향에 대한 연구)

  • Park, Shin;Choi, Hyunseuk;Kim, Taeyoung;Song, Taehyun
    • Textile Coloration and Finishing
    • /
    • v.31 no.1
    • /
    • pp.25-32
    • /
    • 2019
  • The influence of the contact amount of carbon dioxide per unit mass of dyestuff(${\alpha}$) on dyeing uniformity in supercritical fluid dyeing is analyzed in this study. The experiments using a 5L class Pilot Scale dyeing machine is carried out for this study purpose. For a fixed temperature and pressure, the amount of sample and the dyeing leveling time were considered as process variables. The results show that the increase in the amount of the sample causes a higher color difference than the reference sample, and it also increases the amount of residual dye. On the other hand, the color difference tended to decrease with the increase in dyeing time. Based on these results, the correlation between ${\alpha}$ value and dyeing uniformity in supercritical fluid dyeing is obtained.

Synthesis of Polymers in Supercritical Carbon Dioxide (초임계 유체를 이용한 고분자 합성 연구)

  • Lee, Hyun-Suk;Kim, Jin-Woong
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.36 no.1
    • /
    • pp.17-32
    • /
    • 2010
  • This review shows the design and the development of new $CO_2$-soluble hydrocarbon copolymers which can be used as effective stabilizers for successful dispersion polymerizations of bio-compatible materials in supercritical carbon dioxide ($scCO_2$). The basic concepts of supercritical fluid including its solvent properties and applications in polymer synthesis are described. We report the facile synthesis of highly soluble hydrocarbon based copolymers, prepared with good control via controlled free radical polymerization from readily accessible and commercially available monomers. The phase behaviour of these materials was monitored in pure $CO_2$ to investigate how the molecular weights and the composition of the copolymers affect their solubility in $CO_2$. Their activity as a stabilizer was then tested in dispersion polymerization of N-vinyl pyrrolidone in $CO_2$ at various reaction conditions to identify the key parameters required for a successful dispersion stabilization of growing PVP particles. Some prospective potentials of this research which can be applied in developing new polymer materials in an environmentally-friendly fashion for use in cosmetics are also discussed.

Development of Copper and Copper Oxide Removal Technology Using Supercritical CO2 and Hexane for Silicon Solar Cell Recycling (실리콘 태양전지 재자원화를 위한 초임계 CO2 및 헥산을 이용한 구리 및 산화구리 제거기술 개발)

  • Lee, Hyo Seok;Cho, Jae Yu;Heo, Jaeyeong
    • Current Photovoltaic Research
    • /
    • v.7 no.1
    • /
    • pp.21-27
    • /
    • 2019
  • Lifetime of Si photovoltaics modules are about 25 years and a large amount of waste modules are expected to be discharged in the near future. Therefore, the extraction and collection of valuable metals out of discharged Si modules will be one of the important technologies. In this study, we demonstrated that supercritical $CO_2$ extraction method can be effectively used to remove Cu, one of the abundant elements in the module, as well as its oxide form, $Cu_2O$. Especially, we proved that the addition of hexane as co-solvent is effective for the removal of both materials. The optimal ratio of $CO_2$ and hexane was 4:1 at a fixed temperature and pressure of $250^{\circ}C$ and 250 bar, respectively. In addition, it was proven that the removal of $Cu_2O$ was preceded via reduction of $Cu_2O$ to Cu.

Hydrolysis of Starch by $\alpha$-Amylase and Glucoamylase in Supercritical Carbon Dioxide

  • CHUL KIM;LEE, HYEON SUP;YEON WOO RYU
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.3
    • /
    • pp.230-232
    • /
    • 1994
  • The enzymes $\alpha$-amylase and glucoamylase used in starch hydrolysis were found active in the supercritical carbon dioxide solvent Higher hydrolysis of starch sluny in supercritical $CO_2$ was achieved by operating the reactor for the first two hours with $\alpha$ -amylase and to subsequent addition of glucoamylase for continued hydrolysis.

  • PDF

Supercritical $CO_2$ Extraction of Whole Berry Oil from Sea Buckthorn ($Hippopha\ddot{e}$ rhamnoides var. sp) Fruit

  • Xu, Xiang;Gao, Yanxiang;Liu, Guangmin;Zheng, Yuanyuan;Zhao, Jian
    • Food Science and Biotechnology
    • /
    • v.17 no.3
    • /
    • pp.470-474
    • /
    • 2008
  • The whole berry, pulp, and seed of sea buckthorn fruit were extracted with supercritical $CO_2$ to produce edible oils. The effects of extraction pressure, temperature, and $CO_2$ flow rate on the oil yield and extraction rate were investigated, and the fatty acid composition, tocopherol, and carotenoid contents of the oils were compared. The results showed that the extraction rate was affected by pressure, temperature, and $CO_2$ flow rate and, in general, the yield increased with a rise in any of the 3 variables. Fatty acids in the whole berry and pulp oil were dominated by monounsaturated fatty acids (>64%), followed by saturated fatty acids (about 30%). In contrast, fatty acids in the seed oil consisted mainly of polyunsaturated (>60%) and monounsaturated fatty acids (>24%). The seed oil had a slightly higher content of tocopherols, but a much lower content of carotenoids, compared with the whole berry or pulp oil.

Extraction and Separation of Eicosapentaenoic Acid from Sardine by using Supercritical $CO_2$ Extraction (초임계 추출에 의한 정어리에서 Eicosapentaenoic Acid의 추출 및 분리)

  • 이병호
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.22 no.5
    • /
    • pp.629-635
    • /
    • 1993
  • Full fat sardine oil is readily extracted with supercritical carbon dioxide($SC-CO_2$) at pressure of 5,000~8,000 psig. and temperature of 50~$80^{\circ}C$. Under these conditions $SC-CO_2$ has the density of fluid and diffusivity of gas. Therefore, equilibrium solubility is readily achieved in a column batch extractor which permits high gas flow rates. The results showed that extraction was higher at the pressure of 6,000 psig. and $60^{\circ}C$. Fish oil extracted with $SC-CO_2$ is lighter in color, smells less and contains less iron and phosphorus than hexane-extracted crude oil from the same sardine oil. Eicosapentaenoic acid($C_{20-5}$) in sardine oil was fractionated at 90.5% by the $SC-CO_2$ extractor with heat exchange.

  • PDF