• Title/Summary/Keyword: supercritical CO2

Search Result 413, Processing Time 0.025 seconds

Enhancement of the Characteristics of Cement Matrix by the Accelerated Carbonation Reaction of Portlandite with Supercritical Carbon Dioxide

  • Kim, In-Tae;Kim, Hwan-Young;Park, Geun-Il;Yoo, Jae-Hyung;Kim, Joon-Hyung;Seo, Yong-Chil
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.586-591
    • /
    • 2001
  • This research investigated the feasibility of the accelerated carbonation of cement waste forms with carbon dioxide in a supercritical state. Hydraulic cement has been used as a main solidification matrix for the immobilization of radioactive and/or hazardous wastes. As a result of the hydration reaction for major compounds of portland cement, portlandite (Ca(OH)$_2$) is present in the hydrated cement waste form. The chemical durability of a cement form is expected to increase by converting portlandite to the less soluble calcite (CaCO$_3$). For a faster reaction of portlandite with carbon dioxide, SCCD (supercritical carbon dioxide) rather than gaseous $CO_2$, in ambient pressure is used. The cement forms fabricated with an addition of slated lime or Na-bentonite were cured under ambient conditions for 28days and then treated with SCCD in an autoclave maintained at 34$^{\circ}C$ and 80atm. After SCCD treatment, the physicochemical properties of cement matrices were analyzed to evaluate the effectiveness of accelerated carbonation reaction. Conversion of parts of portlandite to calcite by the carbonation reaction with SCCD was verified by XRD (X-ray diffraction) analysis and the composition of portlandite and calcite was estimated using thermogravimetric (TG) data. After SCCD treatment, tile cement density slightly increased by about 1.5% regardless of the SCCD treatment time. The leaching behavior of cement, tested in accordance with an ISO leach test method at 7$0^{\circ}C$ for over 300 days, showed a proportional relationship to the square root of the leaching time, so the major leaching mechanism of cement matrix was diffusion controlled. The cumulative fraction leached (CFL) of calcium decreased by more than 50% after SCCD treatment. It might be concluded that the enhancement of the characteristics of a cement matrix by an accelerated carbonation reaction with SCCD is possible to some extent.

  • PDF

Residue Analysis of Quinclorac in Soil by Supercritical Fluid Extraction and Fluorogenic Derivatization Coupled with High Performance Liquid Chromatography (초임계추출과 형광유도체를 이용한 HPLC 에서의 Quinclorac 의 토양중 잔류분석)

  • Kim, Yong-Whan
    • Applied Biological Chemistry
    • /
    • v.40 no.5
    • /
    • pp.442-446
    • /
    • 1997
  • A new analytical method was developed by HPLC after supercritical fluid extraction and fluorogenic derivatization for the determination of quinclorac (3,7-dichloro-8-quinoline carboxylic acid) in soil. The graminicide quinclorac was extracted from soil by supercritical fluid extraction. Supercritical carbon dioxide at 7000 psi $(80^{\circ}C)$ modified with 30% of methanol extracted quinclorac from soil samples at the level of $0.1ng\;g^{-1}$ with 96% recovery. Extracted quinclorac was determined by HPLC as a fluorescent derivative. Derivatization was made with 4-bromomethyl-7-methoxycoumarin (4-Br-Mmc) using 18-crown-6-ether as a catalyst. The conversion was completed within 30 min and the limit of detection was 0.5 ppb to prove that the procedure could be used in the residue analysis of the pesticides containing carboxylic acid group.

  • PDF

Supercritical Dyeing Technology (초임계 염색 기술)

  • Kim, Taewan;Park, Geonhwan;Kong, Wonbae;Lee, Youn-Woo
    • Clean Technology
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • As the social demands for environmental pollution increase and regulations on the dyeing process wastewater are strengthened, supercritical dyeing process has been attracting attention as an alternative technology to reduce wastewater and energy consumption. In the supercritical dyeing process where carbon dioxide is used as a solvent instead of water as a solvent, there is no wastewater generated. The unfixed dyes can be reused later which makes the process environment-friendly. Also, after dyeing process, dried textiles can be obtained without additional drying process, which makes the process energy efficient. In this article, we have summarized the development of the supercritical dyeing process along with the research in Korea today and compared the principle of supercritical dyeing process with conventional dyeing process. To further explain the principle, studies of the distribution factor and mass transfer of dyes in supercritical carbon dioxide and fibers, as well as solubility between supercritical $CO_2$ and dyes are discussed. The dynamic behavior of dyes in supercritical dyeing apparatus and summary of the supercritical dyeing facilities developed around the world are also discussed. Finally, we suggest the direction of research and development for optimization of supercritical dyeing process and application to synthetic fibers and natural fibers except for polyester.

Evaluation on the Basic Properties of Phosphate Modified Portland Cement Paste for Potential Application of Geologic CO2 Sequestration (이산화탄소 지중 격리용 인산염 혼입 시멘트 페이스트에 관한 기초물성 평가)

  • Yoon, Ju-Han;Kim, Seong-Geun;Kim, Ji-Hyun;Lee, Jae-Yong;Chung, Chul-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.3
    • /
    • pp.253-260
    • /
    • 2017
  • As global warming became a worldwide issue, a significant effort has been made on the development of technology related to $CO_2$ capture and storage. Geologic sequestration of $CO_2$ is one of those technologies for safe disposal of $CO_2$. Geologic sequestration stores $CO_2$ in the form of supercritical fluid into the underground site surrounded by solid rock, and concrete is used for prevention of $CO_2$ leakage into the atmosphere. In such case, concrete may experience severe damage by attack of supercritical $CO_2$, and especially in contact with underground water, very aggressive form of carbonation can occur. In this work, to prevent such deterioration in concrete, calcium phosphates were added to the portland cement to produce hydroxyapatite, one of the most stable mineral in the world. Temperature rise, viscosity, set and stiffening, and strength development of cement paste incorporating three different types of calcium phosphates were investigated. According to the results, it was found that the addition of calcium phosphate increased apparent viscosity, but decreased maximum temperature rise and 28 day compressive strength. It was found that monocalcium phosphate was found to be inappropriate for portland cement based material. Applicability of dicalcium and tricalcium phosphates for portland cement needs to be evaluated with further investigation, including the long term compressive strength development.

Continuous Cocurrent Extraction of Milk Fat by Supercritical Carbon Dioxide (초임계이산화탄소에 의한 유지방의 연속 병류식 추출)

  • Lim, Sang-Bin;Syed S.H.Rizvi
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.23 no.3
    • /
    • pp.459-465
    • /
    • 1994
  • Performance of a continuous cocurrent supercritical fluid extraction column for processing of anhydrous milk fat (AMF) was determined. The extract loading increased and the extraction yield decreased as the superficial velocity of AMF increased. The maximum solubility of AMF in $CO_2$ at 4$0^{\circ}C$/3,500 psig was 0.0195g/g. The increase of the carbon dioxide density enhanced the solubility of milk fat and decreased the cholesterol concentration in the extract. Three operation conditions, such as recycle , reflux, and temperature gradient of extraction column, were tested. More short-chain fatty acvids were extracted by the reflux operation . Longchain fatty acids and thehighest ratio fo long-chain unsaturated to saturated fatty acids were also obtained in the raffinate phase with refluex.

  • PDF