• Title/Summary/Keyword: superconductor coil

Search Result 86, Processing Time 0.027 seconds

A Study on the Winding Method for Reducing Joints of the High Temperature Superconducting Double Pancake Coil (고온 초전도 더블 팬케이크의 접합 수 감소를 위한 권선 방법에 관한 연구)

  • Kang, J.S.;Jo, H.C.;Jang, J.Y.;Hwang, Y.J.;Lee, J.;Lee, W.S.;Park, Y.G.;Ko, T.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.1
    • /
    • pp.30-33
    • /
    • 2012
  • A double pancake winding method is widely used to make the superconducting magnet, using high temperature superconductor (HTS) tape. In the double pancake winding method, the joints with contact resistances between double pancake coils are inevitably needed. The electrical joule heating on the contacts causes refrigerant loss during operation. And a space outside the winding, for splices and mechanical support, is more than that for its layer-wound equivalent. In this paper, a double pancake winding method in order to reduce the number of the joints was proposed. Both of the double pancake coils using the conventional winding method and the proposed winding method have been fabricated and tested to make the solution technically feasible in the double pancake winding method. Especially, critical-current tests of the fabricated double pancake coils were conducted in order to show the same performance and confirm contact resistances between double pancake coils.

Development of CICC for KSTAR PF coil system (KSTAR PF 코일 시스템을 위한 CICC 제작)

  • B. Lim;S. Lee;J. Choi;J. Kim;Y. Chu;H. Park;M. Kim;S. Baang;W. Chung
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.306-309
    • /
    • 2002
  • A superconducting CICC (Cable-In-Conduit-Conductor) is adopted the KSTAR (Korea Superconducting Tokamak Advanced Research) superconducting magnet system which consists of 16 TF coils and 14 PF coils. For the test of KSTAR CICC, an ambient magnetic field of $\pm$ 8 T With a maximum change rate of 20 T/s is required and a background-field magnet system is being developed for SSTF (Samsung Superconductor Test Facility). The CICC for PF1~5 is used as the conductor for background-field coils to check the validity of the PF CICC design. Two pieces of cables have been fabricated and the cable has the length of 870 m and the diameter of 20.3 mm. A continuous CICC jacketing system is developed for the KSTAR CICC fabrication and the jacketing system uses the tube-mill process, which consists of forming, welding, sizing and squaring procedures. The design specification of CICCs and the fabrication process is described.

  • PDF

Analysis of Electromagnetic Characteristics of a 1MW Class HTS Synchronous Motor (1MW급 고온초전도 동기기의 전자기적 특성 해석)

  • Baik, S.K.;Kwon, Y.K.;Lee, E.Y.;Lee, J.D.;Kim, Y.C.;Moon, T.S.;Park, H.J.;Kwon, W.S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.3
    • /
    • pp.32-36
    • /
    • 2007
  • On the contrary of a conventional motor with very narrow air-gap. it is difficult to calculate the accurate magnetic field distribution and the performance of an air-cored superconducting motor by 2 dimensional analysis. which does not use high permeability material except outer machine shield. This paper aims to do analysis of magnetic field and force distribution from the 3 dimensional modelling of a 1MW class superconducting synchronous motor. Especially. the field coil composed of Bi-2223 high-temperature superconductor and the outer machine shield are modelled by finite element analysis software according to their structures and the self-inductance and Lorentz force are calculated based on the 3 dimensional magnetic field calculation. Moreover. the influence of an important parameter, synchronous reactance, has been analyzed on the machine performances such as voltage variation and output power.

A Study on the Characteristic Evaluation of An HTS Coil with respect to the Winding Methods

  • Jo, Hyun-Chul;Choi, Suk-Jin;Jang, Jae-Young;Hwang, Young-Jin;Lee, Chang-Young;Ahn, Min-Cheol;Yoon, Yong-Soo;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.4
    • /
    • pp.31-35
    • /
    • 2010
  • In superconducting magnet applications, winding methods of the superconducting magnet can be classified into a layer winding and a pancake winding. The superconducting magnet using high temperature superconductor (HTS) with rectangular shape is generally fabricated using the pancake winding method. On the other hand, low temperature superconducting (LTS) magnet may be wound by either a pancake winding or a layer winding. Compared with the layer winding, the pancake winding method has a merit of easy replacement of a damaged pancake module, but it also has a demerit of requirement of splicing between each double pancake modules. In this paper, we investigated characteristics of the layer and pancake winding methods using HTS. Six samples were wound out of BSCCO and Coated Conductors (CCs) by two winding methods and their characteristics were experimentally observed.

Design and manufacture of HTS current lead for 10kJ SMES (10kJ SMES용 고온초전도 전류리드의 설계 및 제작)

  • Park, Hae-Yong;Kim, Kwang-Min;Kim, Dae-Won;Kim, A-Rong;Park, Min-Won;Yu, In-Keun;Kim, Seok-Ho;Sim, Ki-Deok;Sohn, Myung-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.599_600
    • /
    • 2009
  • In superconducting magnetic energy storage (SMES) systems, the current leads are usually divided into two parts. Normal metals like brass or copper are often used in the first part from the room temperature to the 1st stage of the cryocooler. Their dimensions were decided to minimize the conduction heat penetration and Ohm's heat generation. The second part down to the cryogenic coil is made of high temperature superconductor (HTS). HTS current leads can reduce the conductive heat penetration because they have poor thermal conductivity and generate no Ohm's heat generation. The brass current lead and the HTS current lead were designed and fabricated for application to the 10kJ class SMES system. The HTS current lead is 300A class. The HTS current lead was stacked with 2 HTS layers using the $Bi_2Sr_2Ca_2Cu_3O_x$ (BSCCO)/Ag. In this paper, we introduce the design procedure of the current leads and discuss the test results of the current leads.

  • PDF

A comparison on the heat load of HTS current leads with respect to uniform and non-uniform cross-sectional areas

  • Han, Seunghak;Nam, Seokho;Lee, Jeyull;Song, Seunghyun;Jeon, Haeryong;Baek, Geonwoo;Kang, Hyoungku;Ko, Tae Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.3
    • /
    • pp.44-48
    • /
    • 2017
  • Current lead is a device that connects the power supply and superconducting magnets. High temperature superconductor (HTS) has lower thermal conductivity and higher current density than normal metal. For these reasons, the heat load can be reduced by replacing the normal metal of the current lead with the HTS. Conventional HTS current lead has same cross-sectional area in the axial direction. However, this is over-designed at the cold-end (4.2 K) in terms of current. The heat load can be reduced by reducing this part because the heat load is proportional to the cross-sectional area. Therefore, in this paper, heat load was calculated from the heat diffusion equation of HTS current leads with uniform and non-uniform cross-sectional areas. The cross-sectional area of the warm-end (65K) is designed considering burnout time when cooling system failure occurs. In cold-end, Joule heat and heat load due to current conduction occurs at the same time, so the cross-sectional area where the sum of the two heat is minimum is obtained. As a result of simulation, current leads for KSTAR TF coils with uniform and non-uniform cross-sectional areas were designed, and it was confirmed that the non-uniform cross-sectional areas could further reduce the heat load.