• Title/Summary/Keyword: superconducting synchronous generator

Search Result 31, Processing Time 0.035 seconds

3D electromagnetic design and electrical characteristics analysis of a 10-MW-class high-temperature superconducting synchronous generator for wind power

  • Kim, J.H.;Park, S.I.;Le, T.D.;Kim, H.M.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.2
    • /
    • pp.47-53
    • /
    • 2014
  • In this paper, the general electromagnetic design process of a 10-MW-class high-temperature superconducting (HTS) synchronous generator that is intended to be utilized for large scale offshore wind generator is discussed. This paper presents three-dimensional (3D) electromagnetic design proposal and electrical characteristic analysis results of a 10-MW-class HTS synchronous generator for wind power. For more detailed design by reducing the errors of a two-dimensional (2D) design owing to leakage flux in air-gap, we redesign and analyze the 2D conceptual electromagnetic design model of the HTS synchronous generator using 3D finite element analysis (FEA) software. Then electrical characteristics which include the no-load and full-load voltage of generator, harmonic contents of these two load conditions, voltage regulation and losses of generator are analyzed by commercial 3D FEA software.

Superconducting Synchronous Motor Design considering Machine Losses (손실을 고려한 초전도 동기전동기 설계)

  • 백승규;손명환;김석환;권영길
    • Progress in Superconductivity and Cryogenics
    • /
    • v.3 no.2
    • /
    • pp.21-26
    • /
    • 2001
  • Superconducting synchronous generators and motors are designed based on 2 dimensional electro-magnetic approach. In the case of generator, if the machine output rating and terminal voltage are decided the armature rating current will be decided automatically according to its power factor. However, in the case of motor, if the output rating is given with [hp] or [kw] units, the armature terminal voltage and current are not decided directly because the machines armature input power and mechanical output are different by way of losses. So in order to calculate the armature current more accurately. the machine losses must be included in the design procedure. In this paper the machine loss of superconducting motor are analyzed and used for decision of the armature input power and current. Moreover, the differences of voltage equations between superconducting synchronous generator and motor are considered.

  • PDF

AC Loss Analysis of 10 MW Class Fully High Temperature Superconducting Synchronous Generators with Dual Field Windings (이중계자를 갖는 10 MW급 전초전도 동기 발전기의 교류손실 해석)

  • Park, Sang Ho;Lee, Myeonghee;Lee, Seyeon;Yang, Hyung Suk;Kim, Woo-Seok;Lee, Ji-Kwang;Choi, Kyeongdal
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.4
    • /
    • pp.467-472
    • /
    • 2020
  • The superconducting synchronous generator is one of the breakthrough elements for direct-drive wind turbines because it is light and small. Normally the superconducting one has copper armature windings in the stator and superconducting field windings on the rotor. The high resistance of the armature can make large copper losses, comparing with the conventional generators with a gear box. One of the solutions for the large copper losses could be a fully superconducting generator. But the high magnetic fields from the superconducting field windings on the rotor also make high perpendicular magnetic fields on the superconducting tapes in the armature windings. We have proposed a fully superconducting synchronous generator with dual field windings. It could immensely decrease the circumferential component of the magnetic field from the field windings at the armature windings. In this paper, we conceptually designed 3 types of superconducting synchronous generators. The first one is the fully superconducting one with conventional structure, which has superconducting armature windings in the stator and superconducting field windings on the rotor. The second one is the one with dual superconducting field windings and superconducting armature windings between them. The last one is the same as the third one except the structure of the armature. If the concentrated armature windings are superconducting ones with cryostats, then they cannot be installed within the span of 2 poles. So, we adopted 3 phases windings within 4 poles system. It makes more AC losses but can be manufactured really.

Conceptual design of 10 MW class gearless type superconducting synchronous generator for wind turbine (10 MW급 gearless 타입 초전도 풍력발전기의 개념 설계)

  • Kim, Nam-Won;Kim, Gyeong-Hun;Kim, Kwang-Min;Kim, Seok-Ho;Park, Min-Won;Yu, In-Keun;Lee, Sang-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1294-1295
    • /
    • 2011
  • This paper describes a conceptual design of 10 MW class gearless type superconducting synchronous generator for wind turbine. The main benefits of gearless type generator are decrease of the process of maintenance and loss caused by drive-train. The designed generator improves efficiency of high-capacity wind turbine by applying superconducting coil making high magnetic field. Conventional wind turbines were investigated for up-scaling of generator and the generator had been designed with estimated design parameters using a finite elements method analysis tool.

  • PDF

Parameter Estimation of Quick Response Excitation type Superconducting Synchronous Generator by F.E.M (유한 요소법을 이용한 속응여자방식 초전도 발전기의 정수 산정)

  • Kim, J.C.;Hahn, S.C.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.600-602
    • /
    • 2000
  • This paper deals with finite element analysis of 2GVA superconducting generator which has slitted electrothermal shield in d-axis. Open emf voltage is calculated and three phase fault is considered to Predict the generator parameters by F.E.M. Results show that quick response excitation could be applied to superconducting generator with slitted electrothermal shield.

  • PDF

The Stability of Power System Including Superconducting Generator (초전도 발전기를 갖는 전력계통의 안정도)

  • Won, Y.J.;Kim, S.W.;Suh, J.Y.;Baik, Y.S.;Hahn, S.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.1072-1074
    • /
    • 1993
  • The superconducting generator has better efficiency, larger power, higher voltage, bigger power per weight ratio and bigger power per volume ratio than conventional machines. Furthermore, for the synchronous reactance of the superconducting generator is smaller than that of conventional ones, the capacity of power transfer is much larger than conventional machina. But, the low inertia constant of superconducting generator hurts the transient stability of power system. This paper deals with the comparisons of transient characteristics between superconducting generator and conventional generator by computer simulation.

  • PDF

Stress analysis of HTS racetrack coils for 10 MW class superconducting wind power generator (10 MW 급 초전도 풍력발전기용 고온초전도 레이스트렉 코일의 응력 해석)

  • Kim, Kwangmin;Kim, Gyeong-Hun;Park, Minwon;Yu, In-Keun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.18 no.2
    • /
    • pp.13-18
    • /
    • 2013
  • The authors designed a high temperature superconductor (HTS) racetrack coil for a 10 MW class superconducting synchronous wind turbine generator. The designed HTS racetrack coil was analyzed by an electromagnetic finite element method (FEM) to determine the magnetic field distribution, inductance, stress, etc. This paper describes the stress analysis and structure design result of the HTS racetrack coil for 10 MW class superconducting synchronous wind turbine generators, considering orthotropic material properties, a large magnetic field, and the resulting Lorentz force effect. Insulated HTS racetrack coils and no-insulation HTS racetrack coils were also considered. According to the results of the stress analysis, the no-insulation HTS racetrack coil results were better than the insulated HTS racetrack coil results.

An Approach to the Design Parameter of Air-Cored Superconducting Synchronous Generator (공심형 초전도 동기발전기의 설계변수에 대한 연구)

  • Jo, Young-Sik;Hong, Jung-Pyo;Lee, Ju;Sohn, Myung-Hwan;Kwon, Young-Kil;Ryu, Kang-Sik
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.3
    • /
    • pp.101-106
    • /
    • 2001
  • Air-cored superconducting synchronous generator(ASSG) is characterized by an air-cored machine with its rotor iron and stator iron teeth removed. For this reason, in the case of the shape optimum design of ASSG, other design variables different from an iron-cored machine should be considered, which will lead to substantial improvement on the performance. The major design variables that are considered by using Three-dimensional Finite element Method(3D FEM) in this paper are : 1) field coil width, 2) axial length of magnetic shield, and 3) armature winding method. End-ring of armature winding is considered in the calculation of EMF. When it comes to field coil width, as field coil width enlarges, its effective field increases but the maximum field on the superconductor decreases. this determines the critical current density. this study presents an effective field coil width, axial length of magnetic shield, and armature winding method, and also the analysis is verified by the experimental results.

  • PDF

Analysis of Magnetic Field of Superconducting Winding According to the Changed Damper Thickness and Material (댐퍼의 두께와 재질 변화에 따른 초전도 선재에 미치는 자장특성 분석)

  • Jeong, Jae-Sik;Lee, Sang-Ho;Hong, Jung-Pyo;Jo, Young-Sik
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.3
    • /
    • pp.5-8
    • /
    • 2012
  • Superconducting windings of synchronous machine have to be operated in below the critical temperature, critical current density and critical magnetic field. If one of these characteristics does not satisfied, then the quench occurred in superconducting winding. Especially the armature current dramatically increased as the superconducting generator is short-circuited at the rated load condition and magnetic field in field winding increased due to the armature current. Therefore, damper is required to reduce the magnetic field of field winding which increases reliability of the superconducting generator. Damper dimension can be decided by time constant[1-2]. In this paper the basic model is high-power and low-speed superconducting generator. Damper time constant was calculated from the changed damper thickness and material. Magnetic flux of field coil at the basic model and changed damper time constant model is analyzed.

Study on the characteristics of magnetic field distribution in AC superconducting generator using normalized data

  • Jo, Young-Sik;Ahn, Ho-Jin;Hong, Jung-Pyo;Lee, Ju;Kwon, Young-Kil;Ryu, Kang-Sik
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.216-220
    • /
    • 2000
  • AC Superconducting Generators (ACSG) are featured by 3D magnetic flux distribution, which decreases in the direction of axis. For this reason, when ACSG is optimal designed, 3D magnetic field analysis is required. This paper proposes 2D Finite Element Analysis (FEA) results normalized by 3D FEA according to the position of armature coil and the ratio of field coil width to axial length in order to reduce the analysis time. By using the proposed data, the reasonable 3D FEA results of ACSG can be only predicted by 2D FEA results. The validity of the 3D FEA results is verified by comparison with the experimental results of 30kVA superconducting synchronous generator.

  • PDF