• Title/Summary/Keyword: superconducting properties($T_c$, $J_c$)

Search Result 88, Processing Time 0.022 seconds

Fabrication of Gd1.5Ba2Cu3O7-y Bulk Superconductors from the Powder Synthesized by a Solid-State Reaction Method (고상반응법으로 합성한 분말로부터 Gd1.5Ba2Cu3O7-y 벌크 초전도체의 제조)

  • Kim, Yong Ju;Park, Seung Yeon;You, Byung Youn;Park, Soon-Dong;Kim, Chan-Joong
    • Korean Journal of Materials Research
    • /
    • v.23 no.6
    • /
    • pp.309-315
    • /
    • 2013
  • $GdBa_2Cu_3O_{7-y}$(Gd123) powders were synthesized by the solid-state reaction method using $Gd_2O_3$ (99.9% purity), $BaCO_3$ (99.75%) and CuO (99.9%) powders. The synthesized Gd123 powder and the Gd123 powder with $Gd_2O_3$ addition ($Gd_{1.5}Ba_2Cu_3O_{7-y}$(Gd1.5)) were used as raw powders for the fabrication of Gd123 bulk superconductors. The Gd123 and Gd1.5 bulk superconductors were fabricated by sintering or a top-seeded melt growth (TSMG) process. The superconducting transition temperature ($T_{c,onset}$) of the sintered Gd123 was 93 K and the transition width was as large as 20 K. The $T_{c,onset}$ of the TSMG processed Gd123 was 82 K and the transition width was also as large as 12 K. The critical current density ($J_c$) at 77 K and 0 T of the sintered Gd123 and TSMG processed Gd123 were as low as a few hundreds A/$cm^2$. The addition of 0.25 mole $Gd_2O_3$ and 1 wt.% $CeO_2$ to Gd123 enhanced the $T_c$, $J_c$ and magnetic flux density (H) of the TSMG processed Gd123 sample owing to the formation of the superconducting phase with high flux pinning capability. The $T_c$ of the TSMG processed Gd1.5 was 92 K and the transition width was 1 K. The $J_cs$ at 77 K (0 T and 2 T) were $3.2{\times}10^4\;A/cm^2$ and $2.5{\times}10^4\;A/cm^2$, respectively. The H at 77 K of the TSMG-processed Gd1.5 was 1.96 kG, which is 54% of the applied magnetic field (3.45 kG).

Microstructure and Property Relationship of Laser Ablated YBCO Thin Films from Modified Melt-Textured Grown Targets

  • Kim, C.H.;Hahn, T.S.;Hong, K.S.
    • Progress in Superconductivity
    • /
    • v.2 no.1
    • /
    • pp.15-19
    • /
    • 2000
  • [ $YBa_2Cu_3O_{7-\delta}$ ] thin films were deposited by laser ablation using modified melt-textured grown targets. As the laser energy density was increased, the films showed an increasing c-axis orientation and an improvement of superconducting properties. However, at 4 $J/cm^2$, the degree of c-axis alignment and $J_c$ of the film were considerably reduced. These were attributed to the enhanced a-axis outgrowths. It was shown that the increased laser energy density resulted in the formation of $Y_2O_3$ inclusions during the c-axis film growth, and that these inclusions nucleated the a-axis outgrowths.

  • PDF

Transport properties of carbide superconductor La2C3

  • Kim, J.S.;Kremer, R.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.1
    • /
    • pp.6-10
    • /
    • 2013
  • We investigate the electrical and thermal transport properties of a sesquicarbide superconductor $La_2C_3$, including electrical resistivity, thermoelectric power, and thermal conductivity. The electrical resistivity exhibits a typical metallic character with a saturation behavior at high temperatures. The thermoelectric power shows a metallic behavior with pronounced phonon-drag effect, comparable with pure metals. The broad peak of the thermal conductivity is observed in the superconducting state, which is rapidly suppressed by magnetic fields. These observations suggest that the electron-phonon scattering is significant in $La_2C_3$, which is relevant with the relatively high-$T_c$ in $La_2C_3$ through strong electron-phonon coupling with low frequency phonon modes.

Fabrication of High-T$_c$ Superconducting Josephson Junctions by Ar lon Milling and E-Beam Lithography (Ar 이온빔 식각과 전자선리소그래피 방벙으로 제작한 고온초전도 조셉슨 접합)

  • Lee, Moon-Chul;Kim, In-Seon;Lee, Jeong-O;Yoo, Kyung-Hwa;Park, Yong-Ki;Park, Jong-Chul
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.91-94
    • /
    • 1999
  • A new type of high-T$_c$ superconducting Josephson junctions has been prepared by Ar ion beam etching and electron beam lithography. YBa$_2Cu_3O_{7-x}$ (YBCO) films deposited on (001) SrTiO$_3$ single crystal substrate by pulsed laser deposition were patterned by Ar ion milling with photolithography. The narrow slit with a electroresist mask, about 1000 ${\AA}$ wide, was constructed over a 3 ${\sim}$ 5 ${\mu}$m bridge of a 1200-${\AA}$-thick YBCO film by electron beam lithography. The slit was then etched by the Ar ion beam to form a damaged 600-${\AA}$-thick YBCO. Thus prepared structure forms an S-N-S (YBCO - damaged YBCO - YBCO) type Josephson junctions. Those junctions exhibit RSI-like I-V characteristics at 77 K. The properties of the Josephson junctions such as I$_c$ R$_N$, and J$_c$ were characterized.

  • PDF

Superconductivity of HTS REBCO coated conductors with multi-superconducting layers

  • Ye Rim, Lee; Kyu Jeong, Song;Gwan Tae, Kim;Sang Soo, Oh;Hong Soo, Ha
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.4
    • /
    • pp.29-35
    • /
    • 2022
  • We fabricated MHOS (multi-HTS layers on one substrate) high-temperature superconducting (HTS) REBCO conductors using HTS REBCO coated conductor (CC) A-specimen, which induces an artificial magnetic flux pinning effect, and HTS REBCO CC B-specimen, that does not induce this effect. The superconducting magnetic properties of the fabricated MHOS conductors were examined by measuring their magnetic moment m(H) curves using a physical property measurement system (QD PPMS-14). The critical current density (Jc) characteristics of our four-layered MHOS HTS REBCO conductor specimens such as BAAB, BBBB, and AAAA were lower than those of their two-layered and three-layered counterparts. At a temperature T of 30 K the magnetic flux pinning physical indicator δ values (obtained from the relationship Jc ∝ H) of the three-layer ABA (δ = 0.35) and two-layer AB (δ = 0.43) specimens were found to be significantly lower than those of the four-layer ABBA (δ = 0.51), BAAB (δ = 0.60), AAAA (δ = 0.78) and BBBB (δ = 0.81) structures.

Effect of Annealing Temperature on Superconducting Properties of Charcoal Doped $MgB_2$ (목탄이 첨가된 $MgB_2$의 초전도 성질에 미치는 열처리 온도의 영향)

  • Kim, Nam-Kyu;Tana, Kai Sin;Jun, Byung-Hyuk;Park, Hai-Woong;Joo, Jin-Ho;Kim, Chan-Joong
    • Progress in Superconductivity
    • /
    • v.9 no.1
    • /
    • pp.80-84
    • /
    • 2007
  • Charcoal was used as a carbon source for improving the critical current density of $MgB_2$ and the effect of annealing temperature on the $J_c$ of $MgB_2$ was investigated. The charcoal powder used in this study was $1{\sim}2$ microns in size and was prepared by wet attrition milling. $MgB_2$ bulk samples with a nominal composition of $Mg(B_{0.95}C_{0.05})_2$ were prepared by in situ process of Mg and B powders. The powder mixture was uniaxially compacted into pellets and heat treated at temperatures of $650^{\circ}C\;-\;1000^{\circ}C$ for 30 minutes in flowing Ar gas. It was found that superconducting transition temperature of $Mg(B_{0.95}C_{0.05})_2$ decreased by charcoal additions which indicates the carbon substitution for boron site. $J_c$ of $Mg(B_{0.95}C_{0.05})_2$ was lower than that of the undoped $MgB_2$ at the magnetic fields smaller than 4 Tesla, while it was higher than that of the undoped sample especially at the magnetic field higher than 4 T. High temperature annealing seems to be effective in increasing $J_c$ due to the enhanced carbon diffusion into boron sites.

  • PDF

High sensitive SQUID sensor on YBCO thin film (YBCO 박막을 이용한 고감도 SQUID 센서)

  • ;;K.NM. Yugay;A.B. Muravjev;K.K. Yugay;G.M.Serojan;A.S.Sjichev
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.758-761
    • /
    • 2003
  • The goal of the research is to study and describe a new stressed state of High Temperature Superconducting (High-T$_{c}$) YBCO Films, to create of SQUIDs (Superconducting Quantum Interference Device) on the bases of these films with maximal sensitivity. With the experimental investigation of the stressed films grown by laser ablation method and its properties, the fabrication of the dc-SQUIDs with maximal sensitivity on the bases of the stressed YBCO films were carried out. The stressed film having the value of the critical current density J$_{c}$=3ㆍ$10^{5}$A/$\textrm{cm}^2$ was the more stable than others.ers.s.

  • PDF

Flux Pinning Properties of REBCO coated conductors for High Field Magnets

  • Awaji, Satoshi;Watanabe, Kazuo
    • Progress in Superconductivity and Cryogenics
    • /
    • v.13 no.4
    • /
    • pp.1-4
    • /
    • 2011
  • From the viewpoint of high field application, the mechanical and critical current properties of recently developed $REBa_2Cu_3O_y$ (RE123, RE: rare-earth) coated conductors are summarized. In addition, effective flux pinning mechanisms in RE123 are also introduced. As one of the examples for high field application, the upgrading of the 18 T cryogen-free superconducting magnet is shown. The large anisotropy of $J_c$ is a problem at low temperature and high magnetic field. The nanorod is considered as the useful methods to improve the anisotropy of $J_c$, although its efficiency becomes small at low temperature.

The Powder Synthesis of (Bi,Pb)-2223 System Superconductor by Oxalate Method and Thick Film Preparation (옥살산염법에 의한 (Bi, Pb)-2223계 초전도 분말 합성과 후막 제조)

  • 하성원;김형태;이응상
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.10
    • /
    • pp.1083-1091
    • /
    • 1997
  • As one of the chemical powder fabrication methods, the powder preparation method by using oxalate has the following advantages; (1) easy to control the chemical stoichiometry, (2) easy to fabricate homogeneous and fine particles, and (3) easy to be thermaly decomposed at low temperature. In the present study, the initial morphology and size distribution of the powder were controlled and the homogeniaty was improved. By carefully controlling the pH with NH4OH, the Bi(Pb)-Sr-Ca-Cu-O superconducting powders were prepared and investigated for their properties. The microstructures and the superconducting properties of the pelletized samples were investigated. Also, the microstructures and electrical properties of the samples prepared by tape casting method were investigated. The fabricated powders were spherical with less than 400 nm, but most of them were agglomerated to be 1~3 ${\mu}{\textrm}{m}$ in size. The critical temperature of the pelletized sample annealed at 84$0^{\circ}C$ for 72 hours in air was 110K. And the critical currents of annealed samples in air prepared by tape casting process for 24 hours and 72 hours were 0.6 A (Jc=600A/$\textrm{cm}^2$) and 1.9A (Jc=1, 900A/$\textrm{cm}^2$) respectively.

  • PDF

Thickness dependence of grain growth orientation in MgB2 films fabricated by hybrid physical-chemical vapor deposition

  • Ranot, Mahipal;Kang, W.N.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.2
    • /
    • pp.9-11
    • /
    • 2013
  • We have investigated the effect of thickness of the MgB2 film on the grain growth direction as well as on their superconducting properties. $MgB_2$ films of various thicknesses were fabricated on c-cut $Al_2O_3$ substrates at a temperature of $540^{\circ}C$ by using hybrid physical-chemical vapor deposition (HPCVD) technique. The superconducting transition temperature ($T_c$) was found to increase with increase in the thickness of the $MgB_2$ film. X-ray diffraction analysis revealed that the orientation of grains changed from c-axis to a-axis upon increasing the thickness of the $MgB_2$ film from 0.6 to 2.0 ${\mu}m$. $MgB_2$ grains of various orientations were observed in the microstructures of the films examined by scanning electron microscopy. It is observed that at high magnetic fields the 2.0-${\mu}m$-thick film exhibit considerably larger critical current density ($J_c$) as compared to 0.6-${\mu}m$-thick film. The results are discussed in terms of an intrinsic-pinning in $MgB_2$ similarly as intrinsic-pinning occurring in high-Tc cuprate superconductors with layered structure.