• 제목/요약/키워드: superconducting power transformer

검색결과 117건 처리시간 0.022초

초전도(신)전력계통 고장전류 분석 및 병렬한류시스템 (A fault current analysis and parallel FCL scheme on superconducting new power system)

  • 윤재영;이승렬;김종율
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제8권1호
    • /
    • pp.49-53
    • /
    • 2006
  • This paper specifies the new power supply paradigm converting 154kV voltage level into 22.9kV class with equivalent capacity using superconducting rower facilities and analyze the fault current characteristics with and without HTS-FCL (High Temperature Superconducting-Fault Current Limiter). Superconducting new power system is the power system to which applies the 22.9kV HTS cable in parallel to HTS transformer and HTS-FCL with low-voltage and mass-capacity characteristics replacing 154kV conventional cable and transformer. The fault current of superconducting new power system will increase greatly because of the mass capacity and low impedance of HTS transformer and cable. This means that the HTS-FCL is necessary to reduce the fault current below the breaking current of circuit breaker. This paper analyze the fault current and suggests the parallel HTS-FCL scheme complementing the inherent problem of HTS-FCL, that is recovery after quenching is impossible within shorter than a few seconds.

배전계통에 대용량변압기 교체 적용시 초전도 한류기의 임피던스에 따른 순간전압 분석 (Analysis on Voltage Sag in Power Distribution System according to SFCL's Impedance for Protective Coordination with Large Transformer)

  • 김진석;문종필
    • 전기학회논문지P
    • /
    • 제63권4호
    • /
    • pp.312-316
    • /
    • 2014
  • In this paper, a voltage sag is analyzed in case of superconducting fault current limiter (SFCL) installed in power distribution system where replaces the main power transformer to large one to meet the power demand. First, the power system is configurated to analyze the operation characteristics of the protective relay with replacement of the main transformer and application of the SFCL. Next, the method to meet the protection coordination is analyzed with large transformer using PSCAD/EMTDC. Finally, the bus voltage is investigated according to the impedance of both main transformer and SFCL in case that the SFCL is applied into feeder.

초고압 초전도 변압기용 고온 초전도 연속전위도체의 절연특성 (Insulation tests of Continuously Transposed Coated Conductors for a high voltage superconducting transformer)

  • 김영일;김우석;박상호;박찬;이세연;천현권;김상현;이지광;최경달
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제12권3호
    • /
    • pp.21-24
    • /
    • 2010
  • A cryogenic insulation technique for a high voltage and a large current capacity of a conductor are now two big issues in a field of recent R&D projects of superconducting power devices, especially a superconducting power transformer. For the large rated currents of the power transformer, it is well known that lots of 2nd generation superconducting conductor, so called coated conductor, should be stacked together with transpositions in order to get an even distributions of the currents. We had come up with an idea of a CTCC (Continuously Transposed Coated Conductor) as a conductor for a large power superconducting transformer, and keep trying to verify the usefulness of the conductor. As one of the efforts of verifying, we prepared and tested a sample CTCC with insulations for high voltage, which includes the epoxy coating and Nomex$^{(R)}$ wrapping. This paper contains the insulation process and dielectric breakdown test results. We expect the results obtained from this experiment to improve an insulation technique for high voltages in various cryogenic environments[1,2].

3차 권선을 고려한 단상 33MVA 고온초전도 변압기의 개념설계 (Conceptual Design of a Single Phase 33 MVA HTS Transformer with a Tertiary Winding)

  • 이승욱;김우석;한송엽;황영인;최경달
    • Progress in Superconductivity
    • /
    • 제7권2호
    • /
    • pp.162-166
    • /
    • 2006
  • We have proposed a 3 phase, 100 MVA, 154 kV class HTS transformer substituting for a 60 MVA conventional transformer. The power transformer of 154 kV class has a tertiary winding besides primary and secondary windings. So the HTS transformer should have the 3rd superconducting winding. In this paper, we designed conceptually the structure of the superconducting windings of a single phase 33 MVA transformer. The electrical characteristics of the HTS transformer such as % impedance and AC loss vary with the arrangement of the windings and gaps between windings. We analyzed the effects of the winding parameters, evaluated the cost of each design, and proposed a suitable HTS transformer model for future power distribution system.

  • PDF

2차 권선의 연결방법에 따른 변압기형 초전도 한류기의 특성 (Characteristics of Transformer-Type SFCL according to the Connecting Methods of Secondary Coils)

  • 조용선;박형민;정수복;최효상
    • 전기학회논문지
    • /
    • 제56권12호
    • /
    • pp.2078-2083
    • /
    • 2007
  • We have analyzed operating characteristics of transformer-type superconducting fault current limiter (SFCL) according to the serial or parallel connections of secondary coils with $YBa_2Cu_3O_7$ (YBCO) thin films. The turn ratio between the primary and secondary coils was 63:21. Transformer-type SFCL using a transformer with secondary winding of serial or parallel coils could reduce the unbalanced quench caused by differences of the critical current density between YBCO thin films. We found that transformer-type SFCL having serial or parallel connections induced simultaneous quench between the superconducting units. The limiting current in the transformer-type SFCL with a parallel connection was lowered to 30 % compared to the SFCL with a serial connection. In the meantime, when the currents generated in the superconducting units were similar, the voltage value in the parallel connection was 60 % as low as that in the serial connection. However, the voltage generated in the primary winding was some higher. In conclusion, we found that transformer-type SFCL with parallel connection of secondary coils was more effective in fault current limiting characteristics and in the reduction of the consumption power for superconducting units compared to those of the transformer-type SFCL with serial connection of secondary coils.

OLTC를 고려한 33 MVA 초전도 변압기 설계 (Design of a 33 MVA HTS Transformer with OLTC)

  • 최지훈;이승욱;박명진;김우석;최경달
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 B
    • /
    • pp.885-886
    • /
    • 2006
  • We have proposed a 100 MVA, 3 phases, 154 kV class HTS transformer which will substitute for 60 MVA conventional transformer. In this paper, we designed conceptually the structure of the superconducting windings of a single phase 33 MVA transformer. The power transformer of 154 kV class has a tertiary winding besides primary and secondary windings. So the HTS transformer should have the 3rd superconducting winding, it makes the cost of the HTS transformer high and the efficiency low. Further more we considered On Load Tap Changer (OLTC) in HTS power transformer. OLTC equipment is required for fitting to a power transformer by which the voltage ratio between the windings can be varied while the transformer is on load. We analyzed the electrical characteristics of the HTS transformer such as magnetic stress and AC loss.

  • PDF

배전변전소에 대용량변압기로 교체 적용시 보호협조를 위한 초전도 전류제한기의 임피던스 분석 (Analysis on SFCL's Impedance for Protective Coordination in Large Transformer installed in Distribution Substation)

  • 김진석;김명후;류일경;문종필;임성훈;김재철;안재민
    • 전기학회논문지
    • /
    • 제58권8호
    • /
    • pp.1479-1484
    • /
    • 2009
  • The introduction of the large transformer due to the large power demand has increased the fault current in power distribution system. The increased fault current can exceed the cut-off ratings of the circuit breaker. As the methods to solve this problem, the superconducting fault current limiter(SFCL) has been notified. However, the limited fault current by SFCL affects the operational characteristics of the protective device such as overcurrent relay. Therefore, the selection of the proper impedance for the SFCL is required to keep overcurrent relay's protective coordination with the SFCL when a large transformer is introduced into the distribution system. In this paper, the SFCL's impedance for protective coordination was investigates in that a large transformer is introduced.

대용량 초전도 변압기 권선용 다중선재의 특성 (Characteristics of Multiply Laminated HTS tapes for the Windings of Large Power Superconducting Transformers)

  • 김우석;이승욱;황영인;장데레사;이희균;홍계원;최경달;한송엽
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 B
    • /
    • pp.1216-1218
    • /
    • 2005
  • A high temperature superconducting power transformer gets its advantages over the conventional ones when the rated capacity of the HTS transformer becomes 30 MVA or more. The standard capacity of the recent 154 kV/ 22.9 kV power transformer is 3 phase 60 MVA in Korea which means that the rated current of the secondary becomes more than 1,500 amps. Considering the current capacities of the HTS wires being developed recently, it is inevitable to use the HTS wires in parallel in order to be applied to the power transformer. But nonuniform distribution of currents and large AC losses are major problems in parallel HTS windings setting aside the difficulties of making parallel windings. To solve these problems, several kinds of multiply laminated HTS wires were fabricated and tested for the application of these multiple wire to an HTS power transformer. Test results were compared with that of each other and the best were selected for the application to an HTS power transformer.

  • PDF

154 kV급 고온초전도 변압기의 전기절연 설계 (Electrical Insulation Design of a 154 kV Class HTS Transformer)

  • 천현권;곽동순;최재형;김상현
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제9권1호
    • /
    • pp.53-56
    • /
    • 2007
  • In the response to the demand for electrical energy, much effort was given to develop and commercialize high temperature superconducting (HTS) power equipment has been made around the world. Especially, a HTS transformer is one of the most promising devices. Recently, Korea Polytechnic University and Gyeongsang National University are developing a power distribution and transmission class HTS transformer that is one of the 21st century superconducting frontier projects in Korea. For the development of 154 kV class HTS transformer, the cryogenic insulation technology should be established. We have been analyzed insulation composition and investigated electrical characteristics such as the breakdown of $LN_2$, barrier, kapton films, and the surface flashover of FRP in $LN_2$. Furthermore, we are going to compare with measured each value and apply the value to the most suitable insulating design of the HTS transformer.

Hybrid형 초전도 한류기의 동시퀜치 유도방안 (A method for simultaneous quench of hybrid type superconducting fault current limiter)

  • 최효상;현옥배;김혜림;박권배;황시돌
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 B
    • /
    • pp.916-917
    • /
    • 2001
  • We investigated the properties of a hybrid type superconducting fault current limiter (SFCL), which consists of a transformer with multiple secondary windings and resistive $YBa_2Cu_3O_7$ (YBCO) thin film stripes. The secondary windings of the transformer were coupled with each other, and a superconducting current limiting unit of YBCO stripes was connected to each of them as a switch. Simple connection in series of SFCL units tends to produce imbalance in power among the units due to slight differences in quench current. In current design, magnetic coupling between the SFCL units provides a solution to power dissipation imbalance, inducing simultaneous quench by current redistribution in the YBCO films.

  • PDF