• Title/Summary/Keyword: superconducting power transformer

Search Result 117, Processing Time 0.021 seconds

Analysis of the Initial Fault Current Limiting Point of the SFCLs (고온초전도 전류제한기의 초기사고전류 제한시점 분석)

  • Park, Chung-Ryul;Du, Ho-Ik;Doo, Seung-Gyu;Kim, Yong-Jin;Kim, Min-Ju;Cho, Yong-Sun;Choi, Hyo-Sang;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.292-292
    • /
    • 2008
  • The superconducting fault current limiter(SFCL) can be used to limit fault current level in electrical transmission line and power system. Up to now, there are several kinds of SFCL that have proposed and it is expects that they will be applied to appropriated position considering their own properties; initial fault current limiting instant and the current limiting characteristics. In this paper, we investigated the initial fault current limiting instant and the amplitude of initial fault current in the resistive type, the flux-lock type, the flux-coupling type and the transformer type SFCL. Experiment results show that the initial fault current limiting instant and the amplitude of initial fault current of the SFCLs are dependant on the ratio of inductance of primary and secondary coils.

  • PDF

Insulation Design and Test of Model Windings for the Development of High Temperature Superconducting Transformer (고온초전도변압기 개발을 위한 모델 권선의 절연 설계 및 평가)

  • Joung, Jong-Man;Baek, Sung-Myeong;Kwak, Dong-Sun;Kim, Sang-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.08a
    • /
    • pp.19-22
    • /
    • 2003
  • In the response to increasing the demands for electrical energy, much effort aimed to develop and commercialize 1MVA HTS power equipments that is supported by a grant from center for Applied Superconductivity Technology of the 21st Century Frontier R&D Program funded by the Ministry of Science and Technology is going on in Korea. For the development, the cryogenic insulation and winding insulation of it in this paper are discussed. In the first many types of dielectric insulating tests were carried out. In detail Breakdown characteristics of $LN_2$, FRP and turn insulating films, flashover characteristics along the FRP surface in $LN_2$ were verified after distinguishing insulation components in HIS windings. And then model windings were designed and insulation test was conducted. These included a AC withstand voltage test of 50kV rms and a lightning impulse test of 150kV at peak.

  • PDF

Brief review of the field test and application of a superconducting fault current limiter

  • Hyun, Ok-Bae
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.4
    • /
    • pp.1-11
    • /
    • 2017
  • This article reviews the recent activities of field testing and application of superconducting fault current limiters (SFCL) based on high-temperature superconductors (HTS). The review particularly focuses on the trends in the field tests in terms of the technical aspects and commercial activities of the SFCLs. Stimulated by the discovery of HTS, numerous research and development activities have been conducted worldwide for SFCLs operating from distribution voltages to transmission voltages. Different types of SFCLs have been developed and field-tested. Consequently, more than 20 field tests and applications have been performed on real grids worldwide while supplying electric power to the customers. These field tests have not only provided the track records of the operation experiences including the problems and maintenance during operation, but also proved their current limiting capabilities against real faults, rendering this new technology highly viable. Through these activities, the following trends in the status of field testing and application are observed. Resistive-type SFCLs with HTS-coated conductors were dominantly used in the most recent field tests. This implies that the resistive type is technically more mature than the other types. Bus-bar coupling and transformer feeders were the major application locations. It is of importance that most of the field applications were conducted as R&D projects. A relevant change from the R&D stage to the application stage is shown as recently deployed SFCLs are expected to be under long-term operation and commercial service. Here, we review the installation of these SFCLs by substation. This review also discusses the recent activities for their commercial applications.

Short-circuit Analysis by the Application of Control Signal of Power Converter to the Inductive Fault Current Limiter

  • Ahn, Min-Cheol;Hyoungku Kang;Bae, Duck-Kweon;Minseok Joo;Park, Dong-Keun;Lee, Sang-Jin;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.2
    • /
    • pp.25-28
    • /
    • 2004
  • Three-phase inductive superconducting fault current limiter (SFCL) with DC reactor rated on 6.6 $KV_{rms}/200 A_{rms}$ has been developed in Korea. This system consists of one DC reactor, AC/DC power converter, and a three-phase transformer, which is called magnetic core reactor (MCR). This paper deals with the short-circuit analysis of the SFCL. The DC reactor was the HTS solenoid coil whose inductance was 84mH. The power converter was performed as the dual-mode operation for dividing voltage between the rectifying devices. The short-term normal operation (1 see) and short-circuit tests (2∼3 cycles) of this SFCL were performed successfully. In regular short-circuit test, the fault current was limited as 30% of rated short-circuit current at 2 cycles after the fault. The experimental results have a very similar tendency to the simulation results. Using the technique for the fault detection and SCR firing control, the fault current limiting rate of the SFCL was improved. From this research, the parameters for design and manufacture of large-scale SFCL were obtained.

Development of a 3.6 MW, $4\;{\mu}s$, 200 pps Pulse Modulator for a High Power Magnetron (고출력 마그네트론 구동용 3.6 MW, $4\;{\mu}s$, 200 pps 펄스 모듈레이터 개발)

  • Jang Sung-Duck;Kwon Sei-Jin;Bae Young-Soon;Oh Jong-Seok;Cho Moo-Hyun;Namkung Won;Son Yoon-Kyoo
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.3
    • /
    • pp.120-126
    • /
    • 2005
  • The Korean Superconducting Tokamak Advanced Research (KSTAR) tokamak device is being constructed to perform long-pulse, high-beta, advanced tokamak fusion physics experiments. The long-pulse operation requires the non-inductive current drive system such as the Lower-Hybrid Current Drive (LHCD) system. The LHCD system drives the non-inductive plasma current by means of C-band RF with 2-MW CW power and 5-GHz frequency. For the LHCD test experiments, an RF test system is developed. It is composed of a 5-GHz, 1.5-MW pulsed magnetron and a compact pulse modulator with $4\;{\mu}s$ of pulse width. The pulse modulator provides the maximum output voltage of 45 kV and the maximum current of 90 A. It is composed of 7 stages of Pulse Forming Network (PFN), a thyratron tube (E2V, CX1191D), and a pulse transformer with 1:4 step-up ratio. In this paper, the detailed design and the performance test of the pulse modulator are presented.

An Optimal Location of Superconducting Fault Current Limiter in Distribution Network with Distributed Generation Using an Index of Distribution Reliability Sensitivity (신뢰도 민감도 지수를 이용한 복합배전계통 내 초전도한류기의 최적 위치에 관한 연구)

  • Kim, Sung-Yul;Kim, Wook-Won;Bae, In-Su;Kim, Jin-O
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.6
    • /
    • pp.52-59
    • /
    • 2010
  • As electric power demand of customers is constantly increasing, more bulk power systems are needed to install in a network. By development of renewable energies and high-efficient facilities and deregulated electricity market, moreover, the amount of distributed resource is considerably increasing in distribution network consequently. Also, distribution network has become more and more complex as mesh network to improve the distribution system reliability and increase the flexibility and agility of network operation. These changes make fault current increase. Therefore, the fault current will exceed a circuit breaker capacity. In order to solve this problem, replacing breaker, changing operation mode of system and rectifying transformer parameters can be taken into account. The SFCL(Superconducting Fault Current Limiter) is one of the most promising power apparatus. This paper proposes a methodology for on optimal location of SFCL. This place is defined as considering the decrement of fault current by component type and the increment of reliability by customer type according to an location of SFCL in a distribution network connected with DG(Distributed Generation). With case studies on method of determining optimal location for SFCL applied to a radial network and a mesh network respectively, we proved that the proposed method is feasible.

Characteristics of Hybrid-Type SFCL by the Number of Secondary Windings with YBCO Films (2차회로의 수에 따른 하이브리드형 초전도 한류기의 동작 특성)

  • Cho Yong-Sun;Choi Hyo-Sang;Park Hyoung-Min
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.2
    • /
    • pp.62-66
    • /
    • 2006
  • We investigated the characteristics of the hybrid-type superconducting fault current limiter (SFCL) by the number of secondary windings. The SFCL consists of a transformer, which has a primary winding and several secondary windings with serially connected $YB_{a2}Cu_{3}O_{7}$ films. In order to increase the capacity. of the SFCL, the serial connection between each current limiting unit is necessary. Resistive-type SFCL has a difficulty in quenching simultaneously between the units due to slight differences of their critical current densities. The hybrid-type SFCL could achieve the simultaneous quenching through the electrical isolation and the mutual flux linkage among the units. We confirmed that the capacity of the SFCL could be increased effectively through the simultaneous quenching among the units. In addition, the power burden of the system could be reduced by adjusting the number of secondary windings. We will investigate the method to increase the capacity through serial and Parallel connections among current limiting units.