• Title/Summary/Keyword: superconducting power engineering device

Search Result 22, Processing Time 0.023 seconds

Magnetic Core Reactor for DC Reactor type Three-Phase Fault Current Limiter

  • Kim, Jin-Sa;Bae, Duck-Kweon
    • International Journal of Safety
    • /
    • v.7 no.2
    • /
    • pp.7-11
    • /
    • 2008
  • In this paper, a Magnetic Core Reactor (MCR) which forms a part of the DC reactor type three-phase high-Tc superconducting fault current limiter (SFCL) has been developed. This SFCL is more economical than other types with three coils since it uses only one high-Tc superconducting (HTS) coil. When DC reactor type three-phase high-Tc SFCL is developed using just one coil, fewer power electronic devices and shorter HTS wire are needed. The SFCL proposed in this paper needs a power-linking device to connect the SFCL to the power system. The design concept for this device was sprang from the fact that the magnetic energy could be changed into the electrical energy and vice versa. Ferromagnetic material is used as a path of magnetic flux. When high-Tc superconducting DC reactor is separated from the power system by using SCRs, this device also limits fault current until the circuit breaker is opened. The device mentioned above was named Magnetic Core Reactor (MCR). MCR was designed to minimize the voltage drop and total losses. Majority of the design parameters was tuned through experiments with the design prototype. In the experiment, the current density of winding conductor was found to be $1.3\;A/mm^2$, voltage drop across MCR was 20 V and total losses on normal state was 1.3 kW.

The recent investigation and engineering application of YBCO bulk materials

  • Hong, Z;Jiang, Y;Viznichenko, R V;Coombs, T A
    • Progress in Superconductivity and Cryogenics
    • /
    • v.10 no.2
    • /
    • pp.1-11
    • /
    • 2008
  • The application of bulk superconducting materials to electrical power systems is very attractive because bulk high temperature superconductors offer excellent electromagnetic properties. In recent years there has been significant progresses in the research and fabrication of superconducting bulk materials. Numerous efforts have been made worldwide to make bulk YBCO as a replacement of the conventional magnets to produce larger magnetic field and hence to improve the device performance in electrical power applications. This paper gives a comprehensive review of different applications of bulk HTS materials, concentrating in three areas including superconducting bearing, superconducting motors and high field magnets. The advantages of applying superconducting material into each application are analysed. The status of current research in each section is summarized and examples are given to demonstrate how YBCO bulk materials can benefit the design of electrical devices. Several numerical models which calculate the electromagnetic properties of bulk superconductors are introduced and finally the article concludes with a review on the studies of the demagnetisation effect in superconducting bulk magnets which is extremely relevant to applying superconducting technology to rotating machines.

A Hybrid Energy Storage System Using a Superconducting Magnet and a Secondary Battery

  • ISE Toshifumi;YOSHIDA Takeshi;KUMAGAI Sadatoshi
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.534-538
    • /
    • 2001
  • Energy storage devices with high energy density as well as high power density are expected to be developed from the point of view of compensation of fluctuating load and generated power by distributed generations such as wind turbines, photovoltaic cells and so on. SMES (Superconducting Magnetic Energy Storage) has higher power density than other energy storage methods, and secondary batteries have higher energy density than SMES. The hybrid energy storage device using SMES and secondary batteries is proposed as the energy storage method with higher power and energy density, the sharing method of power reference value for each storage device, simulation and experimental results are presented.

  • PDF

Superconducting Magnet Power Supply System for the KSTAR 2nd Plasma Experiment and Operation

  • Choi, Jae-Hoon;Lee, Dong-Keun;Kim, Chang-Hwan;Jin, Jong-Kook;Han, Sang-Hee;Kong, Jong-Dae;Hong, Seong-Lok;Kim, Yang-Su;Kwon, Myeun;Ahn, Hyun-Sik;Jang, Gye-Yong;Yun, Min-Seong;Seong, Dae-Kyung;Shin, Hyun-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.326-330
    • /
    • 2013
  • The Korea Superconducting Tokamak Advanced Research (KSTAR) device is an advanced superconducting tokamak to establish scientific and technological bases for attractive fusion reactor. This device requires 3.5 Tesla of toroidal field (TF) for plasma confinement, and requires a strong poloidal flux swing to generate an inductive voltage to produce and sustain the tokamak plasma. KSTAR was originally designed to have 16 serially connected TF magnets for which the nominal current rating is 35.2 kA. KSTAR also has 7 pairs of poloidal field (PF) coils that are driven to 1 MA/sec for generation of the tokamak plasma according to the operation scenarios. The KSTAR Magnet Power Supply (MPS) was dedicated to the superconducting (SC) coil commissioning and $2^{nd}$ plasma experiment as a part of the system commissioning. This paper will describe key features of KSTAR MPS for the $2^{nd}$ plasma experiment, and will also report the engineering and commissioning results of the magnet power supplies.

Active and Reactive Power Control Model of Superconducting Magnetic Energy Storage (SMES) for the Improvement of Power System Stability

  • Ham, Wan-Kyun;Hwang, Sung-Wook;Kim, Jung-Hoon
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.1-7
    • /
    • 2008
  • Superconducting Magnetic Energy Storage (SMES) can inject or absorb real and reactive power to or from a power system at a very fast rate on a repetitive basis. These characteristics make the application of SMES ideal for transmission grid control and stability enhancement. The purpose of this paper is to introduce the SMES model and scheme to control the active and reactive power through the power electronic device. Furthermore, an optimal priority scheme is proposed for the combination of active and reactive power control to be able to stabilize power transient swings.

TURN OFF CHARACTERISTICS OF THE SUPERCONDUCTING POWER ELECTRONICS DEVICE (S-PED). - IN CASE OF TYPE C AND TYPE D-

  • Hoshino, T.;Eguchi, M.;Konishi, T.;Muta, I.;Nakamura, T.;Tsukiji, H.;Naguchi, Y.;Suzuki, M.
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.841-846
    • /
    • 1998
  • The superconducting permanent current switch (PCS) is an important component to build MRI system. This switch uses a thermal and / or magnetic super-to-normal phase transition of the superconductor. Unfortunately, in the past it was not designed for using in line frequency. We made some superconducting power electronics devices operating up to 100 Hz [1]. The results of development and preliminary studying of the hear controlled S-PED up to line frequency are presented.

  • PDF

Analysis on the Operation Characteristics and Protection Coordination between the Current Ratio Differential Relay for Line Protection and the Trigger-type SFCL in the Power Transmission System (송전급 초전도한류기의 적용에 따른 선로보호용 비율전류차동계전기의 동작특성 및 보호협조 분석)

  • Cho, Yong-Sun;Kim, Jin-Seok;Lim, Sung-Hun;Kim, Jae-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.7
    • /
    • pp.925-930
    • /
    • 2013
  • The fault current of the power transmission system is greater than that of the power distribution system. Therefore, the introduction of superconducting fault current limiter (SFCL) is more needed to reduce the increased fault current. The trigger-type SFCL consists of the high-temperature superconducting element (HTSC), the current limiting reactor (CLR) and the circuit breaker (CB). The trigger-type SFCL can be used to supplement the disadvantages of the resistive-type SFCL. The operation characteristics of the current ratio differential relay which is usually applied to the protection device of the power transmission system are expected to be affected under fault conditions and the applicability of the trigger-type SFCL. In this paper, we analyzed the operating characteristics, by the fault conditions, between the current ratio differential relay for line protection and the trigger-type SFCL in the power transmission system through the PSCAD/EMTDC simulation.

Extension of Cut-off Capacity of DC Circuit Breaker due to Superconducting Coil Application (초전도 코일 적용으로 인한 DC 차단기의 차단 용량 증대)

  • Choi, Hye-Won;Choi, Hyo-Sang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.4
    • /
    • pp.593-597
    • /
    • 2019
  • We proposed a current Interruption type DC superconducting circuit breaker(I-DC SCB), a protection device that combines the current limiting technology of a superconductor with the cut-off technology of circuit breaker. Unlike existing protective devices, the current I-DC SCB is a device that combines two protection functions, notably improving failure probability and operational reliability. It is also applicable to all DC systems, such as HV, MV, and LVDC, due to the ease in capacity increase. The 100 kV I-DC SCB was designed after taking into account the actual power system conditions, followed by an analysis of the transient characteristics and the breaking range of the limiter. The results of the analysis showed that the I-DC SCB had a fault current limit of about 75% at the rated voltage, and completed the cut-off operation within about 20 ms.

Operational Characteristics of the FCL Using the Mechanical Contact in the Power System (기계적 접점을 이용한 FCL의 동작 특성)

  • Jung, Byung-Ik;Choi, Hyo-Sang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.5
    • /
    • pp.878-882
    • /
    • 2016
  • These days, SFCLs are being developed in order to limit fault current. However, the superconducting elements that limit the fault current have such problems as capacity increase and require auxiliary devices including cooling device. If devices that comprise the current power network can withstand fault current for at least one cycle, it is possible to limit the fault current with current limiting elements by bypassing it on the fault line. In this study, the fault current limiter was configured with current transformer, vacuum interrupter, and current limiting element. Through the experience, it was confirmed that the fault current was limited within one cycle. The superconducting element, as a current limiting element, limited the fault current by 80 % within one cycle from fault occurrence, and the passive element limited it more than 95 %. Also, through the comparison between resistance curve and power consumption curve, it was confirmed that the current limiting element using a passive element was more stable than the superconducting element that required capacity increase and other auxiliary devices. It was considered that the FCL proposed in this study could limit fault current stably within one cycle from fault occurrence by using the existing power technologies such as fault current detection and solenoid valve operating circuit.