• Title/Summary/Keyword: superconducting field coil

Search Result 179, Processing Time 0.026 seconds

An algorithm to infer the central location of a solenoid coil for the mapping process based on harmonic analysis (조화해석 기반의 맵핑을 위한 솔레노이드 코일의 중심위치 추론 알고리즘)

  • Lee, Woo-Seung;Ahn, Min-Cheol;Hahn, Seung-Yong;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.1
    • /
    • pp.14-19
    • /
    • 2012
  • Shimming, active and/or passive, is indispensable for most MR (magnetic resonance) magnets where homogeneous magnetic fields are required within target spaces. Generally, shimming consists of two steps, field mapping and correcting of fields, and they are recursively repeated until the target field homogeneity is reached. Thus, accuracy of the field mapping is crucial for fast and efficient shimming of MR magnets. For an accurate shimming, a "magnetic" center, which is a mathematical origin for harmonic analysis, must be carefully defined, Although the magnetic center is in general identical to the physical center of a magnet, it is not rare that both centers are different particularly in HTS (high temperature superconducting) magnets of which harmonic field errors, especially high orders, are significantly dependent on a location of the magnetic center. This paper presents a new algorithm, based on a field mapping theory with harmonic analysis, to define the best magnetic center of an MR magnet in terms of minimization of pre-shimming field errors. And the proposed algorithm is tested with simulation under gaussian noise environment.

Breakdown Properties of Coolant for HTS Apparatus Operating at Cryogenic Temperature

  • S.M. Baek;J.M. Joung;Kim, S.H
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.1
    • /
    • pp.52-55
    • /
    • 2003
  • For the dielectric insulation design of any high temperature superconducting (HTS) apparatus in the electrical power systems, the breakdown properties of cryogenic coolants such as $LN_2$ are an important factor of the insulating engineering. Therefore, this paper presented an experimental investigation of breakdown phenomena in $LN_2$ under AC voltage. And we studied the breakdown properties of LN2 with decreasing temperature. Also, the Weibull plots of the breakdown voltage of subcooled $LN_2$ at 65 K for the needle-plane electrode with electrode distance d= 10 mm are studied. The dependence of breakdown voltage for needle-plane and pancake coil-pancake coil electrode on temperature is illustrated. The experimental data suggested that the breakdown voltage of L$N_2$ depend strongly on the temperature of $LN_2$. The breakdown characteristics of $LN_2$ under quasi-uniform and non-uniform electrical field for temperature ranging from 77 K to 65 K were clarified.

Review of progress in electromechanical properties of REBCO coated conductors for electric device applications

  • Shin, Hyung-Seop;Dedicatoria, Marlon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.4
    • /
    • pp.7-16
    • /
    • 2014
  • Rare-earth barium copper oxide (REBCO) coated conductor (CC) tapes have already been commercialized but still possess some issues in terms of manufacturing cost, anisotropic in-field performance, $I_c$ response to mechanical loads such as delamination, homogeneity of current transport property, and production length. Development on improving its performance properties to meet the needs in practical device applications is underway and simplification of the tape's architecture and manufacturing process are also being considered to enhance the performance-cost ratio. As compared to low temperature superconductors (LTS), high temperature superconductor (HTS) REBCO CC tapes provide a much wider range of operating temperature and a higher critical current density at 4.2 K making it more attractive in magnet and coil applications. The superior properties of the REBCO CC tapes under magnetic field have led to the development of superconducting magnets capable of producing field way above 23.5 T. In order to achieve its optimum performance, the electromechanical properties under different deformation modes and magnetic field should be evaluated for practical device design. This paper gives an overview of the effects of mechanical stress/strain on $I_c$ in HTS CC tapes due to uniaxial tension, bending deformation, transverse load, and including the electrical performance of a CC tape joint which were performed by our group at ANU in the last decade.

Evaluation of electromechanical properties in REBCO CC tapes under transverse compression using anvil test method

  • Diaz, Mark Angelo;Shin, Hyung-Seop
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.3
    • /
    • pp.57-61
    • /
    • 2022
  • One of the major applications of REBCO coated conductor (CC) tapes is in superconducting magnets or coils that are designed for high magnet fields. For such applications, the CC tapes were exposed to a high level of stresses which includes uniaxial tensile or transverse compressive stresses resulting from a large magnetic field. Thus, CC tapes should endure such mechanical load or deformation that can influence their electromechanical performance during manufacturing, cool-down, and operation. It has been reported that the main cause of critical current (Ic) degradation in CC tapes utilized in coil windings for superconducting magnets was the delamination due to transversely applied stresses. In most high-magnetic-field applications, the operating limits of the CC tapes will likely be imposed by the electromechanical properties together with its Ic dependence on temperature and magnetic field. In this study, we examined the influence of the transverse compressive stress on the Ic degradation behaviors in various commercially available CC tapes which is important for magnet design Four differently processed REBCO CC tapes were adopted to examine their Ic degradation behaviors under transverse compression using an anvil test method and a newly developed instantaneous Ic measurement system. As a result, all REBCO CC tapes adopted showed robustness against transverse compressive stresses for REBCO coils, notably at transverse compressive stresses until 250 MPa. When the applied stress further increased, different Ic degradation behaviors were observed depending on the sample. Among them, the one that was fabricated by the IBAD/MOCVD process showed the highest compressive stress tolerance.

Comparisons and analysis on the prototype EU-DEMO TF CICC with Nb3Sn cable

  • Kwon, Soun Pil
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.4
    • /
    • pp.31-39
    • /
    • 2017
  • European R&D on designing their version of a DEMO fusion tokamak has recently resulted in the testing of a prototype $Nb_3Sn$ Cable-in-Conduit Conductor (CICC) for the DEMO TF coil. The characteristics and reported results of low temperature performance tests with the prototype CICC sample are compared with those from CICC samples incorporating other recent $Nb_3Sn$ cable designs. The EU-DEMO TF CICC prototype shows performance characteristics similar to that of the ITER CS CICC with short twist pitch. This is a first for a CICC sample that does not have a circular cross section. Assessment of its internal magnetostatic self-field suggests that a reduction in the internal self-field due to the rectangular geometry of the EU-DEMO TF CICC prototype compared to one with a circular geometry may have contributed to the performance characteristics showing current sharing temperature ($T_{cs}$) initially increase then stabilize with repeated electromagnetic loading, similarly to ITER CS CICC results. However, constraints on the internal self-field are not a sufficient condition for this $T_{cs}$ characteristic to occur.

Construction of a 40-channel SQUID System and Its Application to Neuromagnetic Measurements

  • Lee, Y.H.;Kim, J.M.;Kwon, H.C.;Park, Y.K.;Park, J.C.;Lee, D.H.;Ahn, C.B.
    • Progress in Superconductivity
    • /
    • v.2 no.1
    • /
    • pp.20-26
    • /
    • 2000
  • A 40-channel superconducting quantum interference device (SQUID) system was constructed for measuring neuromagnetic fields. Main features of the system are the use of double relaxation oscillation SQUIDs (DROSs), and planar gradiometers measuring magnetic field components tangential to the head surface. The DROSs with high flux-to-voltage transfers enabled direct readout of the SQUID output by room-temperature dc preamplifiers and simple flux-locked loop circuits could be used for SQUID operation. The pickup coil is an integrated first-order planar gradiometer with a baseline of 40 mm. Average noise level of the 40 channels is around 1.2 $fT/cm/{\surd}Hz$ at 100 Hz, corresponding to a field noise of 5 $fT/{\surd}Hz$, operated inside a magnetically shielded room. The SQUID insert was designed to have low thermal load, minimizing the loss of liquid helium. The constructed system was applied to measure auditory-evoked neuromagnetic fields.

  • PDF

The latest trend in magnetocardiogram measurement system technology

  • Lee, Y.H.;Kwon, H.;Kim, J.M.;Yu, K.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.4
    • /
    • pp.1-5
    • /
    • 2020
  • Heart consists of myocardium cells and the electrophysiological activity of the cells generate magnetic fields. By measuring this magnetic field, magnetocardiogram (MCG), functional diagnosis of the heart diseases is possible. Since the strength of the MCG signals is weak, typically in the range of 1-10 pT, we need sensitive magnetic sensors. Conventionally, superconducting quantum interference devices (SQUID)s were used for the detection of MCG signals due to its superior sensitivity to other magnetic sensors. However, drawback of the SQUID is the need for regular refill of a cryogenic liquid, typically liquid helium for cooling low-temperature SQUIDs. Efforts to eliminate the need for the refill in the SQUID system have been done by using cryocooler-based conduction cooling or use of non-cryogenic sensors, or room-temperature sensors. Each sensor has advantage and disadvantage, in terms of magnetic field sensitivity and complexity of the system, and we review the recent trend of MCG technology.

Characteristics of Transmutation Reactor Based on LAR Tokamak

  • Hong, B.G.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.431-431
    • /
    • 2012
  • A compact tokamak reactor concept as a 14 MeV neutron source is desirable from an economic viewpoint for a fusion-driven transmutation reactor. LAR (Low Aspect Ratio) tokamak allows a potential of high "see full txt" operation with high bootstrap current fractions and can be used for a compact fusion neutron source. For the optimal design of a reactor, a radial build of reactor components has to be determined by considering the plasma physics and engineering constraints which inter-relate various reactor components and are constrained to use ITER physics and technology. In a transmutation reactor, the blanket should produce enough tritium for tritium self-sufficiency and the neutron multiplication factor, keff should be less than 0.95 to maintain sub-criticality. The shield should provide sufficient protection for the superconducting toroidal field (TF) coil against radiation damage and heating effects of the fusion neutrons, fission neutrons, and secondary gammas. In this work, characteristics of transmutation reactor based on LAR tokamak is investigated by using the coupled system analysis.

  • PDF

An experimental study of magnetic diffusion in Bi-2212 High-Tc supercondutor tube (Bi-2212 고온초전도체 튜브의 자기확산에 관한 연구)

  • 정성기;설승윤
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.2
    • /
    • pp.66-70
    • /
    • 2003
  • Transient magnetic diffusion process in a melt-cast Bi2Sr2CaCu20X(Bi-2212) tube was studied by experimental and numerical analyses. The transient diffusion partial differential equation is transformed into an ordinary differential equation by integral method. The penetration depth of magnetic field into a superconducting tube is obtained by solving the differential equation numerically. The results show that the penetration depth as a function of time which is somewhat different from the results by Bean's critical state model. The reason of the difference between the present results and that of Bean's model is discussed and compared in this paper. This experiment measure the magnetic flux density in the supercondutor after supply direct-current of Bi-2212 rounded by copper coil. This study was discussed of valid of a previous numerical solution which is compared by the penetrate time and the magnetic flux density difference of between the present results and the numerical solution.

Characteristics of a Fusion Driven Transmutation Reactor

  • Hong, B.G.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.582-582
    • /
    • 2012
  • Characteristics of a fusion-driven transmutation reactor was investigated. A compact reactor concept is desirable from an economic viewpoint. For the optimal design of a reactor, a radial build of reactor components has to be determined by considering the plasma physics and engineering constraints which inter-relate various reactor components. In a transmutation reactor, design of blanket and shield play a key role in determining the size of a reactor; the blanket should produce enough tritium for tritium self-sufficiency, the transmutation rate of waste has to be maximized, and the shield should provide sufficient protection for the superconducting toroidal field (TF) coil. To determine the radial build of the blanket and the shield, not only a radiation transport analysis but also a burnup calculation were coupled with the system analysis and it allowed the self-consistent determination of the design parameters of a transmutation reactor.

  • PDF