• Title/Summary/Keyword: superconducting field coil

Search Result 179, Processing Time 0.02 seconds

Fault current limitation characteristics of the Bi-2212 bulk coil for distribution-class superconducting fault current limiters (배전급 초전도 한류기 개발을 위한 Bi-2212 초전도 한류소자의 사고전류 제한 특성)

  • Sim, Jung-Wook;Kim, Hye-Rim;Yim, Seong-Woo;Hyun, Ok-Bae;Lee, Hai-Gun;Park, Kwon-Bae;Kim, Ho-Min;Lee, Bang-Wook;Oh, Il-Sung;Breuer, Frank;Bock, Joachim
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.639-640
    • /
    • 2006
  • We investigated fault current limitation characteristics of the resistive superconducting fault current limiter(SFCL) which consisted of a Bi-2212 bulk coil and a shunt coil. The Bi-2212 bulk coil and the shunt coil were connected in parallel. The Bi-2212 bulk coil was placed inside the shunt coil to induce field-assisted quench. The fault test was conducted at an input voltage of 200 $V_{rms}$ and fault current of 12 $kA_{rms}$ and 25 $kA_{rms}$. The fault conditions were asymmetric and symmetric, and the fault period was 5 cycles. The test results show that the SFCL successfully limited the fault current of 12 $kA_{rms}$ and 25 $kA_{rms}$ to below $5.5{\sim}6.9kA_{peak}$ within $0.64{\sim}2.17$ msec after the fault occurred. Limitation was faster under symmetric fault test condition due to the larger change rate of current. We concluded that the speed of fault current limitation was determined by the speed of current rise rather than the amplitude of a short circuit current. These results show that the Bi-2212 bulk coil is suitable for distribution-class SFCLs.

  • PDF

Characteristic of Magnetic Field Distribution of 100hp Class High Temperature Superconducting motor (100hp급 고온초전도 모터의 자장분포특성)

  • 이정종;조영식;주진홍;홍정표;권영길
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.312-314
    • /
    • 2002
  • Magnetic circuit design of HTS (High Temperature Superconducting) motor is important to achieve the power at a given load condition, and it is essential to the thermal design for HTS motor rotors. To determine the result of thermal design, the magnetic field distribution has to be known exactly. On the basis of the 2 dimensional magnetic field analysis, the magnetic field distributions due to several cases are calculated by using Biot-Savart equation and magnetic image method. And the I$_{c}$ of HTS field coil was calculated by using I$_{c}$-B(equation omitted) curve and 3D FEA(Finite Element Analysis).is).

  • PDF

A design of multi-width HTS magnets considering both wire consumption and field homogeneity

  • Yang, Hongmin;Ahn, Minchul
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.2
    • /
    • pp.24-27
    • /
    • 2021
  • This paper presents a design methodology of high-temperature superconducting (HTS) magnets. The magnet consists of several double pancake coils with a variety of wire width. This technique, named Multi-Width, is well known to make efficient use of the superconducting wire. It is common for design of high-temperature superconducting magnets to not only reduce wire consumption used, but also consider the homogeneity of the magnetic field. In this paper, we study a design method that efficiently reduces wire usage while considering magnetic field homogeneity. The design is carried out by calculating the critical current and the critical magnetic field according to the configuration of arranging the thickness of the wire to determine the number of windings. The width of wire comprising the magnet was set to 4 - 12 mm, and the number of double pancake coils was set to an even number to consist of top-down symmetry. To verify the validity of the design, we compared the progress of the design code with a complete enumeration survey. As a case study, we designed a magnet that generates a central magnetic field of 3 T or more in a 240 mm bore in diameter. Optimality can be evaluated by weighing wire consumption and field homogeneity according to the magnet's use or user preference.

The Design of Cryogenic System for KSTAR TOKAMAK (KSTAR TOKAMAK을 위한 저온시스템의 설계)

  • 김동락;오영국;정영수;이정민;최창호;임기학;허남일;김양수;박영민
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2001.02a
    • /
    • pp.48-49
    • /
    • 2001
  • Cryogenic technology is one of the key technologies for fusion reactor equipped with superconducting coil for plasma confinement. The KSTAR(Korea Superconducting Tokamak Advanced Research)Project is in progress since 1996. Major parameters of the KSTAR tokamak are : major radius 1.8m, minor radius 0.5m, toroidal field 3.5 Tesla and plasma current 2MA with a strongly shaped plasma cross-section and double -null diverter. Considering practical engineering constraints, the KSTAR device is designed for a pulse length of 300 sec in up-graded operation mode but in the initial configuration would provide a pulse length of 20 sec provided by the poloidal coil system in base-line operation mode. The cryogenic system is composed as follows : cold box, helium compressor system, distribution box, helium gas buffer tank, helium gas purifying system, gas recovery system, liquid helium storage dewar, current lead box, current bus line and liquid nitrogen storage tank.

  • PDF

Experimental study on the correlation between measurement length and winding or twist pitch for magnetization loss occurring in CORC and TSTC

  • Ji-Kwang Lee;Jinwoo Han;Kyeongdal Choi;Woo-Seok Kim
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.4
    • /
    • pp.40-44
    • /
    • 2023
  • For high-temperature superconducting power applications that need large current capacity, a large current conductor manufactured using multiple superconducting tape is required. Conductors being studied for large currents capacity such as CORC, TSTC, and RACC have advantages and disadvantages, and in order to use these conductors in coil form and apply them to AC power devices, research on magnetization loss occurring in superconductors due to external magnetic fields is essential. To accurately measure magnetization loss in a conductor that is twisted by stacking straight conductors like TSTC, the correlation between the measuring system and the shape of the sample must be clearly known to accurately measure the loss. In this paper, we will confirm the difference in magnetization loss measurement values according to the correlation between the length of the pickup coil and the twist pitch of the sample in CORC and TSTC shapes, and review considerations for accurate magnetization loss measurement from the results.

Design and Implementation of Portable NMR Probe Magnet

  • Junxia, Gao;Yiming, Zhang;Jiashen, Tian
    • Journal of Magnetics
    • /
    • v.22 no.1
    • /
    • pp.14-22
    • /
    • 2017
  • The NMR's probe consists of the static magnetic field generator (magnetic source) and the RF coil. It is very strict for the homogeneity of the static magnetic field intensity of the magnetic source, so the cost of the magnetic source is more expensive in the entire nuclear magnetic resonance instrument. The magnetic source generally consists of electromagnet, permanent magnet and superconducting magnet. The permanent magnet basically needs not to spend on operation and maintenance and its cost of manufacture is much cheaper than the superconducting magnet. Therefore, the permanent magnet may be the only choice for the static magnetic field device if we want to use the magnetic resonance instrument as an analyzer for production by reducing price. A new probe magnet was developed on the basis of the permanent magnet ring in this paper to provide a technological way for reducing the manufacturing cost, weight and volume of the existing nuclear magnetic resonance instrument (including MRI) probe.

Analysis of Electromagnetic Characteristics of a 1MW Class HTS Synchronous Motor (1MW급 고온초전도 동기기의 전자기적 특성 해석)

  • Baik, S.K.;Kwon, Y.K.;Lee, E.Y.;Lee, J.D.;Kim, Y.C.;Moon, T.S.;Park, H.J.;Kwon, W.S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.3
    • /
    • pp.32-36
    • /
    • 2007
  • On the contrary of a conventional motor with very narrow air-gap. it is difficult to calculate the accurate magnetic field distribution and the performance of an air-cored superconducting motor by 2 dimensional analysis. which does not use high permeability material except outer machine shield. This paper aims to do analysis of magnetic field and force distribution from the 3 dimensional modelling of a 1MW class superconducting synchronous motor. Especially. the field coil composed of Bi-2223 high-temperature superconductor and the outer machine shield are modelled by finite element analysis software according to their structures and the self-inductance and Lorentz force are calculated based on the 3 dimensional magnetic field calculation. Moreover. the influence of an important parameter, synchronous reactance, has been analyzed on the machine performances such as voltage variation and output power.

Characteristics of Wireless Power Transmission Using Superconductor Coil to Improve the Efficiency According to the Shielding Materials (초전도 공진 코일의 효율성을 높이기 위한 차폐 재질에 따른 무선전력전송 효율비교 분석)

  • Lee, Yu-Kyeong;Jeong, In-Sung;Hwang, Jun-Won;Choi, Hyo-Sang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.4
    • /
    • pp.684-688
    • /
    • 2016
  • The magnetic resonance method requires high quality factor(Q-factor) of resonators. Superconductor coils were used in this study to increase the Q-factor of wireless power transfer(WPT) systems in the magnetic resonance method. The results showed better transfer efficiency compared to copper coils. However, as superconducting coils should be cooled below critical temperatures, they require cooling containers. In this viewpoint, shielding materials for the cooling containers were applied for the analysis of the WPT characteristics. The shielding materials were applied at both ends of the transmitter and receiver coils. Iron, aluminum, and plastic were used for shielding. The electric field distribution and S-parameters (S11, S21) of superconducting coils were compared and analyzed according to the shield materials. As a result, plastic shielding showed better transfer efficiency, while iron and aluminum had less efficiency. Also, the maximum magnetic field distribution of the coils according to the shielding materials was analyzed. It was found that plastic shielding had 5 times bigger power transfer rate than iron or aluminum. It is suggested that the reliability of superconducting WPT systems can be secured if plastic is used for the cooling containers of superconducting resonance coils.

Fabrication and Test Results of Superconducting Magnet for Crystal Growing System (단결정 성장용 초전도 마그네트의 제작 및 성능평가)

  • 심기덕;진홍범;최석진;김경한;한호한;김형진;이봉근;권영길
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.374-377
    • /
    • 2002
  • Magnetic field is necessary to control the convection of melted silicon and to improve the quality of the wafer in the 12inch silicon wafer growing process. Nowadays, superconducting magnet is used in this process. We fabricated and tested a saddle shaped superconducting magnet for 8inch silicon wafer growing system. And the protection circuits for HTS current lead and superconducting coil are designed and manufactured. In this paper, their manufacturing process and test results are introduced.

  • PDF

Stability Analysis of Main Coil for Background Magnet is SSTF (Samsung Superconducting Test Facility) (삼성 초전도 시험설비 외부자장 발생용 자석의 주 코일 안정성 해석)

  • ;王秋良
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2000.02a
    • /
    • pp.12-16
    • /
    • 2000
  • The mission of SSTF is test of superconducting cables for KSTAR magnets. To make realistic environment for superconductor in SSTF, background magnets are required. Cable-in-conduit conductors (CICC) are widely used for large scale superconducting magnets such as ITER and KSTAR. Main design criteria for conductor of superconducting magnets are stability, operating margin and cable cooling requirement, caused by peak field and the gradient of fields with respect to time, in system. ZERODEE which used energy balance method, is applied for the calculation of stability. To increase conductor performance, three different strands, such as HP-I, HP-II, and HP-III, are tested. The present configuration of CICC is used for main coils of background magnet in SSTF and Central Solenoid coils of KSTAR magnets.

  • PDF