• Title/Summary/Keyword: super-pixel

Search Result 67, Processing Time 0.023 seconds

Enhanced Multi-Frame Based Super-Resolution Algorithm by Normalizing the Information of Registration

  • Kwon, Soon-Chan;Yoo, Jisang
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.363-371
    • /
    • 2014
  • In this paper, a new super-resolution algorithm is proposed by using successive frames for generating high-resolution frames with better quality than those generated by other conventional interpolation methods. Generally, each frame used for super-resolution must only have global translation and motions of sub-pixel unit to generate good result. However, the newly proposed MSR algorithm in this paper is exempt from such constraints. The proposed algorithm consists of three main processes; motion estimation for image registration, normalization of motion vectors, and pattern analysis of edges. The experimental results show that the proposed algorithm has better performance than other conventional algorithms.

Local Differential Pixel Assessment Method for Image Stitching (영상 스티칭의 지역 차분 픽셀 평가 방법)

  • Rhee, Seongbae;Kang, Jeonho;Kim, Kyuheon
    • Journal of Broadcast Engineering
    • /
    • v.24 no.5
    • /
    • pp.775-784
    • /
    • 2019
  • Image stitching is a technique for solving the problem of narrow field of view of a camera by composing multiple images. Recently, as the use of content such as Panorama, Super Resolution, and 360 VR increases, the need for faster and more accurate image stitching technology is increasing. So far, many algorithms have been proposed to satisfy the required performance, but the objective evaluation method for measuring the accuracy has not been standardized. In this paper, we present the problems of PSNR and SSIM(Structural similarity index method) measurement methods and propose a Local Differential Pixel Mean method. The LDPM evaluation method that includes geometric similarity and brightness measurement information is proved through a test, and the advantages of the evaluation method are revealed through comparison with SSIM.

A Study on High Resolution Reconstruction Algorithms for improving Resolution (해상도 향상을 위한 고해상도 복원 알고리즘 연구)

  • Baek, Young-Hyun;Moon, Sung-Ryong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.1
    • /
    • pp.72-79
    • /
    • 2007
  • In this paper, It propose a new restoration algorithm of high resolution, which is reconstructed to high resolution image using low resolution image informations. The proposed algorithm is constructed based on super resolution theory, it is consisted of progressive steps of the integration and construction. It reduced a lot of data-processing capacity and noise with integration through sub-pixel movement and wavelet basis through a higher resolution. As a result, it is shown that the main information is maintained and the error rate is improved. Using expansion fuzzy wavelet B-spline interpolation in stage of construction, it is confirmed that we can achieve smoothing image and good resolution without blur and block.

Area Measurement of Organism Image using Super Sampling and Interpolation (수퍼 샘플링과 보간을 이용한 생물조직 영상의 면적 측정)

  • Choi, Sun-Wan;Yu, Suk-Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.10
    • /
    • pp.1150-1159
    • /
    • 2014
  • This paper proposes a method for extracting tissue cells from an organism image by an electron microscope and getting the whole cell number and the area from the cell. In general, the difference between the cell color and the background is used to extract tissue cell. However, there may be a problem when overlapped cells are seen as a single cell. To solve the problem, we split them by using cell size and curvature. This method has a 99% accuracy rate. To measure the cell area, we compute two areas, the inside and boundary of the cell. The inside is simply calculated by the number of pixels. The cell boundary is obtained by applying super sampling, linear interpolation, and cubic spline interpolation. It improves the error rate, 18%, 19%, and 120% respectively, in comparison to the counting method that counts a pixel area as 1.

Infrared Visual Inertial Odometry via Gaussian Mixture Model Approximation of Thermal Image Histogram (열화상 이미지 히스토그램의 가우시안 혼합 모델 근사를 통한 열화상-관성 센서 오도메트리)

  • Jaeho Shin;Myung-Hwan Jeon;Ayoung Kim
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.3
    • /
    • pp.260-270
    • /
    • 2023
  • We introduce a novel Visual Inertial Odometry (VIO) algorithm designed to improve the performance of thermal-inertial odometry. Thermal infrared image, though advantageous for feature extraction in low-light conditions, typically suffers from a high noise level and significant information loss during the 8-bit conversion. Our algorithm overcomes these limitations by approximating a 14-bit raw pixel histogram into a Gaussian mixture model. The conversion method effectively emphasizes image regions where texture for visual tracking is abundant while reduces unnecessary background information. We incorporate the robust learning-based feature extraction and matching methods, SuperPoint and SuperGlue, and zero velocity detection module to further reduce the uncertainty of visual odometry. Tested across various datasets, the proposed algorithm shows improved performance compared to other state-of-the-art VIO algorithms, paving the way for robust thermal-inertial odometry.

Sampling-based Super Resolution U-net for Pattern Expression of Local Areas (국소부위 패턴 표현을 위한 샘플링 기반 초해상도 U-Net)

  • Lee, Kyo-Seok;Gal, Won-Mo;Lim, Myung-Jae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.5
    • /
    • pp.185-191
    • /
    • 2022
  • In this study, we propose a novel super-resolution neural network based on U-Net, residual neural network, and sub-pixel convolution. To prevent the loss of detailed information due to the max pooling of U-Net, we propose down-sampling and connection using sub-pixel convolution. This uses all pixels in the filter, unlike the max pooling that creates a new feature map with only the max value in the filter. As a 2×2 size filter passes, it creates a feature map consisting only of pixels in the upper left, upper right, lower left, and lower right. This makes it half the size and quadruple the number of feature maps. And we propose two methods to reduce the computation. The first uses sub-pixel convolution, which has no computation, and has better performance, instead of up-convolution. The second uses a layer that adds two feature maps instead of the connection layer of the U-Net. Experiments with a banchmark dataset show better PSNR values on all scale and benchmark datasets except for set5 data on scale 2, and well represent local area patterns.

Hybrid Super-Resolution Algorithm Robust to Cut-Change (컷 전환에 적응적인 혼합형 초고해상도 기법)

  • Kwon, Soon-Chan;Lim, Jong-Myeong;Yoo, Jisang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.7
    • /
    • pp.1672-1686
    • /
    • 2013
  • In this paper, we propose a hybrid super-resolution algorithm robust to cut-change. Existing single-frame based super-resolution algorithms are usually fast, but quantity of information for interpolation is limited. Although the existing multi-frame based super-resolution algorithms generally robust to this problem, the performance of algorithm strongly depends on motions of input video. Furthemore at boundary of cut, applying of the algorithm is limited. In the proposed method, we detect a define boundary of cut using cut-detection algorithm. Then we adaptively apply a single-frame based super-resolution method to detected cut. Additionally, we propose algorithms of normalizing motion vector and analyzing pattern of edge to solve various problems of existing super-resolution algorithms. The experimental results show that the proposed algorithm has better performance than other conventional interpolation methods.

Super-Pixel-Based Segmentation and Classification for UAV Image (슈퍼 픽셀기반 무인항공 영상 영역분할 및 분류)

  • Kim, In-Kyu;Hwang, Seung-Jun;Na, Jong-Pil;Park, Seung-Je;Baek, Joong-Hwan
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.2
    • /
    • pp.151-157
    • /
    • 2014
  • Recently UAV(unmanned aerial vehicle) is frequently used not only for military purpose but also for civil purpose. UAV automatically navigates following the coordinates input in advance using GPS information. However it is impossible when GPS cannot be received because of jamming or external interference. In order to solve this problem, we propose a real-time segmentation and classification algorithm for the specific regions from UAV image in this paper. We use the super-pixels algorithm using graph-based image segmentation as a pre-processing stage for the feature extraction. We choose the most ideal model by analyzing various color models and mixture color models. Also, we use support vector machine for classification, which is one of the machine learning algorithms and can use small quantity of training data. 18 color and texture feature vectors are extracted from the UAV image, then 3 classes of regions; river, vinyl house, rice filed are classified in real-time through training and prediction processes.

Increasing Spatial Resolution of Remotely Sensed Image using HNN Super-resolution Mapping Combined with a Forward Model

  • Minh, Nguyen Quang;Huong, Nguyen Thi Thu
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_2
    • /
    • pp.559-565
    • /
    • 2013
  • Spatial resolution of land covers from remotely sensed images can be increased using super-resolution mapping techniques for soft-classified land cover proportions. A further development of super-resolution mapping technique is downscaling the original remotely sensed image using super-resolution mapping techniques with a forward model. In this paper, the model for increasing spatial resolution of remote sensing multispectral image is tested with real SPOT 5 imagery at 10m spatial resolution for an area in Bac Giang Province, Vietnam in order to evaluate the feasibility of application of this model to the real imagery. The soft-classified land cover proportions obtained using a fuzzy c-means classification are then used as input data for a Hopfield neural network (HNN) to predict the multispectral images at sub-pixel spatial resolution. The 10m SPOT multispectral image was improved to 5m, 3,3m and 2.5m and compared with SPOT Panchromatic image at 2.5m resolution for assessment.Visually, the resulted image is compared with a SPOT 5 panchromatic image acquired at the same time with the multispectral data. The predicted image is apparently sharper than the original coarse spatial resolution image.

Super-Resolution Reconstruction of Humidity Fields based on Wasserstein Generative Adversarial Network with Gradient Penalty

  • Tao Li;Liang Wang;Lina Wang;Rui Han
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.5
    • /
    • pp.1141-1162
    • /
    • 2024
  • Humidity is an important parameter in meteorology and is closely related to weather, human health, and the environment. Due to the limitations of the number of observation stations and other factors, humidity data are often not as good as expected, so high-resolution humidity fields are of great interest and have been the object of desire in the research field and industry. This study presents a novel super-resolution algorithm for humidity fields based on the Wasserstein generative adversarial network(WGAN) framework, with the objective of enhancing the resolution of low-resolution humidity field information. WGAN is a more stable generative adversarial networks(GANs) with Wasserstein metric, and to make the training more stable and simple, the gradient cropping is replaced with gradient penalty, and the network feature representation is improved by sub-pixel convolution, residual block combined with convolutional block attention module(CBAM) and other techniques. We evaluate the proposed algorithm using ERA5 relative humidity data with an hourly resolution of 0.25°×0.25°. Experimental results demonstrate that our approach outperforms not only conventional interpolation techniques, but also the super-resolution generative adversarial network(SRGAN) algorithm.